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MÓDULO DE UM NÚMERO REAL 

 
 
 
O módulo ou o valor absoluto de 𝑥 é representado por |𝑥| e corresponde a: 
•  𝒙, quando 𝑥 é maior ou igual a zero; e 
•  −𝒙, quando 𝑥 é menor do que zero. 
 

 |𝑥| = {
𝒙;   𝒙 ≥ 𝟎   
−𝒙;   𝒙 < 𝟎

 

 
• Se o que está dentro das duas barras é positivo ou zero, mantenha o que está dentro das barras; ou 
• Se o que está dentro das duas barras é negativo, insira um sinal de menos. 
 
 
 
• |𝒙| ≥ 𝟎, para todo 𝒙 real 
 
• |𝒙| = |−𝒙| 
 
•  |𝒙| × |𝒚| = |𝒙𝒚| 
 

• 
|𝒙|

|𝒚|
= |

𝒙

𝒚
|; 𝒚 ≠ 𝟎 

 

• |𝒙|𝟐 = 𝒙𝟐 
 

• √𝒙𝟐 = |𝒙| 
 
• |𝒙 + 𝒚| ≤ |𝒙| + |𝒚| 
 
• |𝒙 − 𝒚| ≥ |𝒙| − |𝒚|  

Módulo de um número real 

Definição 

Propriedades do módulo 
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Definição 

Considere um número qualquer 𝑥 pertencente ao conjunto dos números reais, isto é, 𝑥 ϵ ℝ.  

O módulo ou o valor absoluto de 𝑥 é representado por |𝑥| e corresponde a: 

• 𝒙, quando 𝑥 é maior ou igual a zero; e 

• −𝒙, quando 𝑥 é menor do que zero. 

De modo ainda mais formal, podemos escrever: 

|𝑥| = {
𝒙;   𝒙 ≥ 𝟎   
−𝒙;   𝒙 < 𝟎

 

Professor, não me venha com formalismos! Não entendi nada! 

Calma, caro aluno! A definição do módulo é muito importante. Isso porque, sempre que surgir alguma dúvida 
no conteúdo dessa aula, devemos recorrer a ela. Essa definição basicamente nos diz o seguinte: 

 

• Se o que está dentro das duas barras é positivo ou zero, mantenha o que está dentro 
das barras; ou 

• Se o que está dentro das duas barras é negativo, insira um sinal de menos. 

Vamos realizar alguns exemplos com números. 

 

Quanto que vale | + 𝟑|? Ora, + 3 é maior do que zero, correto? Logo, pela definição de módulo:  

|+𝟑| = +𝟑  

Agora, qual é o valor de | − 𝟐|? Ora, −2 é menor do que zero, ou seja, é negativo. Logo, pela 
definição de módulo, devemos inserir um sinal de menos: 

|−𝟐| = −(−𝟐) = 2  

Vejamos outros exemplos: 
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• |−√3| = √3; 

• |0| = 0; 

• |−5| = 5; 

• |−
√3

4
| =

√3

4
; 

• |𝜋| = 𝜋; 

• |
5

3
| =

5

3
. 

Consequências da definição 

Agora que entendemos o conceito, como podemos descrever |𝑥 − 1|? Isso vai depender do valor daquilo 
que está dentro das duas barras: 

• Se 𝑥 − 1 é positivo ou zero, mantenha o que está dentro das barras; ou 
• Se 𝑥 − 1 é negativo, insira um sinal de menos. 

De um modo mais formal, podemos dizer: 

|𝑥 − 1| = {
𝒙 − 𝟏;         𝒙 − 𝟏 ≥ 𝟎
−(𝒙 − 𝟏);  𝒙 − 𝟏 < 𝟎

 

Desenvolvendo um pouco mais, temos: 

|𝑥 − 1| = {
𝒙 − 𝟏;   𝒙 ≥ 𝟏       
𝟏 − 𝒙;   𝒙 < 𝟏      

 

Em outras palavras, |𝑥 − 1| é igual a: 

• 𝒙 − 𝟏, quando 𝒙 é maior ou igual a 1; ou 

• 𝟏 − 𝒙, quando 𝒙 é menor do que 1. 

Agora vamos complicar um pouco mais. Como podemos descrever |𝑥2 − 5𝑥 + 6|? Devemos nos ater à 
definição: 

• Se 𝑥2 − 5𝑥 + 6 é positivo ou zero, mantenha o que está dentro das barras; ou 
• Se 𝑥2 − 5𝑥 + 6 é negativo, insira um sinal de menos. 

Veja que agora temos um problema: devemos determinar quando 𝑥2 − 5𝑥 + 6 é positivo ou zero e quando                              
𝑥2 − 5𝑥 + 6 é negativo. Para tanto, é necessário encontrar as raízes da função quadrática. 
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Para encontrar as raízes, vamos usar a fórmula de Bhaskara. Temos: 

 𝑎 = 1 

 𝑏 = −5 

 𝑐 = 6 

O discriminante é dado por: 

 ∆ = 𝑏2 − 4𝑎𝑐 

 = (−5)2 − 4 × 1 × 6 

 = 25 − 24 

 = 1 

As raízes são: 

 𝑥 =
−𝑏±√∆

2𝑎
 

 𝑥 =
−(−5)±√1

2×1
 

 𝑥 =
5±1

2
 

 𝑥1 = 2   ;    𝑥2 = 3 

Agora que temos as raízes, podemos descrever a parábola. Como o coeficiente 𝒂 é positivo, a concavidade 
da parábola é para cima. 

 

Pronto! Agora sabemos que: 

• 𝑥2 − 5𝑥 + 6 é positivo ou zero e quando 𝑥 ≥ 3 ou 𝑥 ≤ 2; 
• 𝑥2 − 5𝑥 + 6 é negativo quando 2 < 𝑥 < 3. 
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Para descrever |𝑥2 − 5𝑥 + 6|, vamos voltar à definição: 

• Se 𝑥2 − 5𝑥 + 6 é positivo ou zero, mantenha o que está dentro das barras; ou 
• Se 𝑥2 − 5𝑥 + 6 é negativo, insira um sinal de menos. 

De um modo mais formal, podemos dizer: 

|𝑥2 − 5𝑥 + 6| = {
𝒙𝟐 − 𝟓𝒙 + 𝟔;           𝒙 ≤ 𝟐        

−(𝒙𝟐 − 𝟓𝒙 + 𝟔);     𝟐 < 𝒙 < 𝟑 

𝒙𝟐 − 𝟓𝒙 + 𝟔;           𝒙 ≥ 𝟑        

 

Desenvolvendo um pouco mais, temos: 

|𝑥2 − 5𝑥 + 6| = {
𝒙𝟐 − 𝟓𝒙 + 𝟔;           𝒙 ≤ 𝟐        

−𝒙𝟐 + 𝟓𝒙 − 𝟔;        𝟐 < 𝒙 < 𝟑 

𝒙𝟐 − 𝟓𝒙 + 𝟔;           𝒙 ≥ 𝟑        

 

Valor de uma função modular para uma abcissa determinada 

Pessoal, ainda vamos tratar sobre funções modulares no decorrer deste assunto.  

Nesse momento, é importante que você saiba calcular o valor de uma função modular para um valor 
determinado de 𝒙, isto é, para uma abcissa determinada. 

Em resumo, uma vez que temos o valor da abcissa 𝒙, basta substituir esse valor na função dada.  

Suponha, por exemplo, que temos a função 𝑓(𝑥) = |𝑥 − 1|. Qual é o valor de 𝑓(−3)? Basta substituir −3 na 
função: 

𝑓(𝑥) = |𝑥 − 1| 

𝑓(−3) = | − 3 − 1| 

= | − 4| 

= 4 

E se tivermos a função 𝑔(𝑥) = |𝑥2 − 5𝑥 + 6|, qual é o valor de 𝑔(−1)? Basta substituir −1 na função: 

𝑔(𝑥) = |𝑥2 − 5𝑥 + 6| 

𝑔(−1) = |(−1)2 − 5. (−1) + 6| 

= |1 + 5 + 6| 

= |12| 

= 12 
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Propriedades do módulo 

Vejamos agora algumas propriedades do módulo. 

• |𝒙| ≥ 𝟎, para todo 𝒙 real 

Esta propriedade nos diz que o módulo de um número real sempre será maior ou igual a zero. Portanto, o 
módulo de um número real nunca será negativo. 

• |𝒙| = | − 𝒙| 

Esta propriedade afirma que o módulo de um número é igual ao módulo do seu oposto. Por exemplo, para 
𝑥 = −5, temos que: 

|−5| = 5 

|−(−5)| = |5| = 5 

Note, portanto, que | − 𝟓| é igual a | − (−𝟓)|. 

• |𝒙| × |𝒚| = |𝒙𝒚| 

Esta propriedade nos diz que o produto dos módulos de dois números (produto de |𝑥| por |𝑦|) é igual ao 
módulo do produto dos números (módulo de 𝑥𝑦). Por exemplo: 

|−𝟑| × |𝟓| = 3 × 5 = 15 

|−𝟑 × 𝟓| = |−15| = 15 

Note, portanto, que | − 𝟑| × |𝟓| é igual a | − 𝟑 × 𝟓|. 

• 
|𝒙|

|𝒚|
= |

𝒙

𝒚
| , 𝒚 ≠ 𝟎 

Esta propriedade afirma que o quociente dos módulos de dois números (quociente de |𝑥| por |𝑦|) é igual ao 

módulo do quociente dos números (módulo de 
𝑥

𝑦
). Note que o denominador 𝑦 deve ser diferente de zero, 

pois caso contrário não poderíamos realizar a divisão. Por exemplo: 

| − 𝟑|

|𝟓|
=

3

5
 

|
−𝟑

𝟓
| = |−

3

5
| =

3

5
 

Note, portanto, que 
|−𝟑|

|𝟓|
 é igual a |

−𝟑

𝟓
|. 
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• |𝒙|𝟐 = 𝒙𝟐 

Esta propriedade afirma que o quadrado do módulo de um número é igual ao próprio quadrado do número. 
Exemplo: 

(−𝟐)𝟐 = (−2) × (−2) = 4 

|−𝟐|𝟐 = 22 = 4 

Note, portanto, que (−𝟐)𝟐 é igual a |−𝟐|𝟐. 

• √𝒙𝟐 = |𝒙| 

Essa propriedade nos diz que a raiz do quadrado de um número é igual ao módulo do número. Observe o 
seguinte exemplo: 

√𝟐2 = √4 = 2 

√(−𝟐)2 = √4 = 2 

Note, portanto, que √𝑥2 é: 

• 𝒙, quando 𝑥 é maior ou igual a zero; e 

• −𝒙, quando 𝑥 é menor do que zero. 

Logo, podemos dizer que √𝑥2 = |𝑥|. 

• |𝒙 + 𝒚| ≤ |𝒙| + |𝒚| 

Esta propriedade nos diz que o módulo da soma é menor ou igual à soma dos módulos.  

Trata-se de uma propriedade interessante porque muitos podem pensar que o módulo da soma seria 
sempre igual à soma dos módulos, o que não é sempre verdade. Vejamos alguns exemplos: 

|3 + 5| ≤ |3| + |5| 

|8| ≤ 3 + 5 

8 ≤ 8 

Nesse caso, o módulo da soma foi igual à soma dos módulos, de modo que permanece válida a propriedade 
|𝒙 + 𝒚| ≤ |𝒙| + |𝒚|. 

Vamos a um outro exemplo: 

|−3 + 5| ≤ |−3| + |5| 

|2| ≤ 3 + 5 

2 ≤ 8 
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Nesse caso, o módulo da soma foi menor do que soma dos módulos, de modo que permanece válida a 
propriedade |𝒙 + 𝒚| ≤ |𝒙| + |𝒚|. 

• |𝒙 − 𝒚| ≥ |𝒙| − |𝒚| 

Esta propriedade nos diz que o módulo da diferença é maior ou igual à diferença dos módulos. Note que, 
com relação à propriedade anterior, o sentido da desigualdade é invertido. Vejamos alguns exemplos: 

|3 − 5| ≥ |3| − |5| 

|−2| ≥ 3 − 5 

2 ≥ −2 

 

|5 − 3| ≥ |5| − |3| 

|2| ≥ 5 − 3 

2 ≥ 2 

 

|(−3) − 5| ≥ |−3| − |5| 

|−8| ≥ 3 − 5 

8 ≥ −2 
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EQUAÇÕES MODULARES 

 
 
 

Módulo de 𝑓(𝑥) igual a uma constante   
 

|𝒇(𝒙)| = 𝒌       {
𝒇(𝒙) = 𝒌
𝐨𝐮

𝒇(𝒙) = −𝒌
  

 
Módulo de 𝑓(𝑥) igual zero 

   
|𝒇(𝒙)| = 𝟎      𝒇(𝒙) = 𝟎  

 
 

Módulo de 𝑓(𝑥) igual a módulo de 𝑔(𝑥) 
 

 |𝒇(𝒙)| = |𝒈(𝒙)|      {
𝒇(𝒙) = 𝒈(𝒙)

𝐨𝐮
𝒇(𝒙) = −𝒈(𝒙)

 

 
Módulo de 𝑓(𝑥) igual a 𝑔(𝑥) 

  

   |𝒇(𝒙)| = 𝒈(𝒙)      

{
 
 

 
 
𝒇(𝒙) = 𝒈(𝒙)

𝐨𝐮
𝒇(𝒙) = −𝒈(𝒙)

𝐞
𝒈(𝒙) ≥ 𝟎

 

 
 

 
Uma equação modular pode não se encaixar nas propriedades que acabamos de ver. Nesse caso, 
devemos utilizar a definição de módulo para resolver o problema.  
 
 
Para obter as raízes de uma função modular, basta igualar a função a zero. 

 

  

Equações modulares 

Propriedades para equações modulares 

 

Resolução de equações modulares pela definição de módulo 

 

Raízes de uma função modular 
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Propriedades para equações modulares 

Equações modulares são equações que apresentam uma operação de módulo. Exemplo: 

|3𝑥 − 1| = 4 

Vamos conhecer algumas propriedades que nos ajudam a resolver as equações modulares. 

Módulo de 𝒇(𝒙) igual a uma constante 

Considere que 𝒙 é a variável que se quer determinar, 𝒌 é uma constante real maior do que zero e 𝒇(𝒙) é 
uma função com a variável 𝑥. 

Nesse caso, se |𝑓(𝑥)| é igual a uma constante 𝑘, 𝒇(𝒙) pode ser tanto igual 𝒌 quanto igual a – 𝒌. Em outras 
palavras: 

|𝒇(𝒙)| = 𝒌       {
𝒇(𝒙) = 𝒌
𝐨𝐮

𝒇(𝒙) = −𝒌
  

Essa é a principal propriedade utilizada para resolver equações modulares.  

Professor, não entendi absolutamente nada! 

Calma, caro aluno! Só se aprende com exemplos mesmo! Vejamos um exemplo: 

|𝑥| = 2 

Observe que duas soluções, 𝒙 = 𝟐 e 𝒙 = −𝟐, satisfazem a equação acima. Isso porque tanto |𝟐| quanto                     
| − 𝟐| são iguais a 2. 

Vejamos um outro exemplo: 

|2𝑥 − 1| = 3 

Nesse caso, temos duas possibilidades: 

|2𝑥 − 1| = 3 → {
2𝑥 − 1 = 3    

ou
2𝑥 − 1 = −3 

→ {
2𝑥 = 4    
ou

2𝑥 = −2 
→ {

𝑥 = 2    
ou

𝑥 = −1 
 

Nesse caso, o conjunto solução da equação é: 

𝑆 = {−1; 2} 

Observe que a constante 𝑘 deve ser maior do que zero. Isso porque o módulo de um número deve ser maior 
ou igual a zero. Considere, por exemplo, a seguinte equação: 
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|2𝑥 − 1| = −3 

Essa equação não apresenta solução real, pois não existe um número 𝑥 real que faça com que |2𝑥 − 1| seja 
um número negativo. Portanto, o conjunto-solução dessa equação é o conjunto vazio, isto é: 

𝑆 = ∅ 

Módulo de 𝒇(𝒙) igual a zero 

Uma outra situação que pode ocorrer é |𝑓(𝑥)| = 0. Nesse caso, temos que 𝑓(𝑥) = 0. Em outras palavras: 

|𝑓(𝑥)| = 0        𝑥 = 0 

Por exemplo, se tivermos a equação |2𝑥 + 1| = 0, temos que: 

2𝑥 + 1 = 0 

2𝑥 = −1 

𝑥 = −
1

2
 

Nesse caso, o conjunto solução da equação é: 

𝑆 = {−
1

2
} 

Módulo de 𝒇(𝒙) igual a módulo de 𝒈(𝒙) 

Considere que 𝒙 é a variável que se quer determinar e que 𝒇(𝒙) e 𝒈(𝒙) são funções com a variável 𝑥. 

Nesse caso, se |𝑓(𝑥)| é igual a |𝑔(𝑥)|, temos que 𝑓(𝑥) é igual a 𝑔(𝑥) ou então 𝑓(𝑥) é igual a −𝑔(𝑥). Em 
outras palavras: 

|𝑓(𝑥)| = |𝑔(𝑥)|      {
𝑓(𝑥) = 𝑔(𝑥)

ou
𝑓(𝑥) = −𝑔(𝑥)

  

Por exemplo, na equação modular |2𝑥 + 1| = |𝑥 − 1|, temos duas possibilidades: 

|2𝑥 + 1| = |𝑥 − 1| → {
2𝑥 + 1 = 𝑥 − 1         

ou
2𝑥 + 1 = −(𝑥 − 1) 

→ {
2𝑥 − 𝑥 = −1 − 1

ou
2𝑥 + 1 = −𝑥 + 1 

→ {
x = −2
ou
𝑥 = 0

 

Nesse caso, o conjunto solução é: 

𝑆 = {−2; 0} 
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Módulo de 𝒇(𝒙) igual a 𝒈(𝒙) 

Lembre-se de que o módulo de um número sempre será maior do que zero, isto é: 

|𝑥| ≥ 0 

Nesse caso, quando surgirem equações da forma |𝒇(𝒙)| = 𝒈(𝒙), em que 𝑓(𝑥) e 𝑔(𝑥) são funções de 𝑥, é 
necessário garantir que 𝒈(𝒙) ≥ 𝟎. 

Em outras palavras: 

|𝑓(𝑥)| = 𝑔(𝑥)      

{
 
 

 
 
𝑓(𝑥) = 𝑔(𝑥)

ou
𝑓(𝑥) = −𝑔(𝑥)

𝐞
𝒈(𝒙) ≥ 𝟎

 

Por exemplo, considere a seguinte equação modular: 

|𝑥 − 1| = 2𝑥 + 2 

Note que ela é da forma |𝑓(𝑥)| = 𝑔(𝑥), em que 𝑓(𝑥) e 𝑔(𝑥) são funções de 𝑥. 

Temos que: 

|𝑥 − 1| = 2𝑥 + 2 →  

{
 
 

 
 

𝑥 − 1 = 2𝑥 + 2
ou

𝑥 − 1 = −(2𝑥 + 2)
𝐞

𝟐𝒙 + 𝟐 ≥ 𝟎

 →  

{
 
 

 
 𝑥 − 2𝑥 = 2 + 1

ou
𝑥 − 1 = −2𝑥 − 2

𝐞
𝟐𝒙 ≥ −𝟐

→ 

{
 
 

 
 

−𝑥 = 3
ou

3𝑥 = 1 − 2
𝐞

𝒙 ≥ −
𝟐

𝟐

→ 

{
 
 

 
 
𝑥 = −3
ou

𝑥 = −
1

3
𝐞

𝒙 ≥ −𝟏

 

Apesar de obtermos duas soluções para o problema, uma delas não é válida. Isso porque 𝒙 = −𝟑 não 
satisfaz a condição 𝒙 ≥ −𝟏. 

Portanto, a solução para o problema é: 

𝑆 = {−
1

3
} 
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Resolução de equações modulares pela definição de módulo 

Pessoal, algumas vezes as equações modulares não se encaixam nas propriedades que acabamos de ver. 
Nesse caso, devemos utilizar a definição de módulo para resolver o problema. Vamos a um exemplo: 

|𝟒𝒙 + 𝟑| + |𝟐𝒙 − 𝟏| = 𝟑 

Note que as propriedades que aprendemos não nos ajudam, pois nesse caso temos a soma de dois módulos. 
Devemos, portanto, utilizar a definição de módulo para resolver o problema: 

• Se o que está dentro das duas barras é positivo ou zero, mantenha o que está dentro 
das barras; ou 

• Se o que está dentro das duas barras é negativo, insira um sinal de menos. 

Vamos verificar o sinal de 𝟒𝒙 + 𝟑: 

𝟒𝒙 + 𝟑 ≥ 𝟎   →    4𝑥 ≥ −3   →    𝒙 ≥ −
𝟑

𝟒
 

𝟒𝒙 + 𝟑 < 𝟎   →   4𝑥 < −3  →   𝒙 < −
𝟑

𝟒
 

Agora vamos verificar o sinal de 𝟐𝒙 − 𝟏: 

𝟐𝒙 − 𝟏 ≥ 𝟎  → 2𝑥 ≥ 1  → 𝒙 ≥
𝟏

𝟐
 

𝟐𝒙 − 𝟏 < 𝟎   → 2𝑥 < 1  → 𝒙 <
𝟏

𝟐
 

Logo, devemos analisar a equação |𝟒𝒙 + 𝟑| + |𝟐𝒙 − 𝟏| = 𝟑 para três casos: 

• 𝒙 < −
𝟑

𝟒
; 

 

• −
𝟑

𝟒
≤ 𝒙 <

𝟏

𝟐
; e 

 

• 𝒙 ≥
𝟏

𝟐
. 

Podemos inserir esses casos em uma tabela: 
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Caso 1: 𝒙 < −
𝟑

𝟒
 

| 𝟒𝒙 + 𝟑⏟    |
𝐍𝐞𝐠𝐚𝐭𝐢𝐯𝐨

+ | 𝟐𝒙 − 𝟏⏟    |
𝐍𝐞𝐠𝐚𝐭𝐢𝐯𝐨

= 𝟑  

−(4𝑥 + 3) − (2𝑥 − 1) = 3 

−4𝑥 − 3 − 2𝑥 + 1 = 3 

−6𝑥 = 3 + 3 − 1 

−6𝑥 = 5 

𝑥 = −
5

6
 

Note que essa solução para 𝑥 é válida, pois ela é menor do que −
𝟑

𝟒
. 

Caso 2: −
𝟑

𝟒
≤ 𝒙 <

𝟏

𝟐
 

| 𝟒𝒙 + 𝟑⏟    |
𝐏𝐨𝐬𝐢𝐭𝐢𝐯𝐨

+ | 𝟐𝒙 − 𝟏⏟    |
𝐍𝐞𝐠𝐚𝐭𝐢𝐯𝐨

= 𝟑  

(4𝑥 + 3) − (2𝑥 − 1) = 3 

4𝑥 + 3 − 2𝑥 + 1 = 3 

2𝑥 = 3 − 3 − 1 

2𝑥 = −1 

𝑥 = −
1

2
 

Note que essa solução para 𝑥 é válida, pois ela está compreendida no intervalo −
𝟑

𝟒
≤ 𝒙 <

𝟏

𝟐
. 

Caso 3: 𝒙 ≥
𝟏

𝟐
 

| 𝟒𝒙 + 𝟑⏟    |
𝐏𝐨𝐬𝐢𝐭𝐢𝐯𝐨

+ | 𝟐𝒙 − 𝟏⏟    |
𝐏𝐨𝐬𝐢𝐭𝐢𝐯𝐨

= 𝟑  

(4𝑥 + 3) + (2𝑥 − 1) = 3 

6𝑥 = 3 − 3 + 1 

6𝑥 = 1 

𝑥 =
1

6
 

Note que essa solução para 𝑥 não é válida, pois ela não é maior ou igual a 
𝟏

𝟐
. 
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Portanto, o conjunto solução da equação |𝟒𝒙 + 𝟑| + |𝟐𝒙 − 𝟏| = 𝟑 é: 

𝑆 = {−
5

6
; −

1

2
} 

Exemplos de equações modulares 

Vamos resolver algumas equações modulares. 

• |𝟑𝒙 + 𝟏| = 𝟒 

Temos uma equação modular em que o módulo de 𝒇(𝒙) é igual a uma constante. Nesse caso, devemos 
proceder do seguinte modo: 

|𝑓(𝑥)| = 𝑘       {
𝑓(𝑥) = 𝑘
ou

𝑓(𝑥) = −𝑘
 

Logo: 

|3𝑥 + 1| = 4 → {
3𝑥 + 1 = 4   

ou
3𝑥 + 1 = −4

 →  {
3𝑥 = 3   
ou

3𝑥 = −5

 →  {

𝑥 = 1   
ou

𝑥 = −
5

3

 

Portanto, o conjunto solução é: 

𝑆 = {−
5

3
; 1} 

• |𝟐𝒙 − 𝟏| = 𝟎 

Temos uma equação modular em que o módulo de 𝒇(𝒙) é igual a zero. Nesse caso, devemos proceder do 
seguinte modo: 

|𝑓(𝑥)| = 0        𝑥 = 0 

Logo: 

2𝑥 − 1 = 0 

2𝑥 = 1 

𝑥 =
1

2
 

Portanto, o conjunto solução é: 

𝑆 = {
1

2
} 
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• |𝟐𝒙 − 𝟏| = |𝒙 + 𝟏| 

Temos uma equação modular em que o módulo de 𝒇(𝒙) é igual ao módulo de 𝒈(𝒙). Nesse caso, devemos 
proceder do seguinte modo: 

|𝑓(𝑥)| = |𝑔(𝑥)|      {
𝑓(𝑥) = 𝑔(𝑥)

ou
𝑓(𝑥) = −𝑔(𝑥)

 

Logo: 

|2𝑥 − 1| = |𝑥 + 1| → {
2𝑥 − 1 = 𝑥 + 1        

ou
2𝑥 − 1 = −(𝑥 + 1)

→ {
2𝑥 − 𝑥 = 1 + 1   

ou
2𝑥 + 𝑥 = 1 − 1  

→ {
𝑥 = 2
ou
𝑥 = 0

 

Portanto, o conjunto solução é: 

𝑆 = {0;  2} 

• |𝒙𝟐 − 𝟓𝒙 + 𝟔| = |𝒙𝟐 − 𝟒| 

Novamente, temos uma equação modular em que o módulo de 𝒇(𝒙) é igual ao módulo de 𝒈(𝒙). Nesse 
caso, devemos proceder do seguinte modo: 

|𝑓(𝑥)| = |𝑔(𝑥)|      {
𝑓(𝑥) = 𝑔(𝑥)

ou
𝑓(𝑥) = −𝑔(𝑥)

 

Logo: 

|𝑥2 − 5𝑥 + 6| = |𝑥2 − 4| →  {
𝑥2 − 5𝑥 + 6 = 𝑥2 − 4

ou
𝑥2 − 5𝑥 + 6 = −(𝑥2 − 4)

→ {
−5𝑥 = −6 − 4

ou
𝑥2 − 5𝑥 + 6 = −𝑥2 + 4

 

 

→ {
𝑥 = 2                      

ou
2𝑥2 − 5𝑥 + 2 = 0

 

Para encontrar as raízes, vamos utilizar a fórmula de Bhaskara. Temos: 

 𝑎 = 2 

 𝑏 = −5 

 𝑐 = 2 

O discriminante é dado por: 
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 ∆ = 𝑏2 − 4𝑎𝑐 

 = (−5)2 − 4.2.2 

 = 25 − 16 

 = 9 

As raízes são: 

 𝑥 =
−𝑏±√∆

2𝑎
 

 𝑥 =
−(−5)±√9

2.2
 

 𝑥 =
5±3

4
 

 𝑥1 = 2  ;  𝑥2 =
1

2
 

Voltando ao problema original, temos: 

{
𝑥 = 2                      

ou
2𝑥2 − 5𝑥 + 2 = 0

→ {

𝑥 = 2                      
ou

𝑥 = 2  ou  𝑥 =
1

2

 

Note que obtivemos duas vezes a solução 𝑥 = 2. Portanto, o conjunto solução é: 

𝑆 = {
1

2
; 2} 

• |𝟐𝒙 + 𝟏| = 𝒙 − 𝟏 

Temos uma equação modular em que o módulo de 𝒇(𝒙) é igual a 𝒈(𝒙). Nesse caso, devemos proceder do 
seguinte modo: 

|𝑓(𝑥)| = 𝑔(𝑥)      

{
 
 

 
 
𝑓(𝑥) = 𝑔(𝑥)

ou
𝑓(𝑥) = −𝑔(𝑥)

𝐞
𝒈(𝒙) ≥ 𝟎

 

Logo: 
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|2𝑥 + 1| = 𝑥 − 1  →   

{
 
 

 
 

2𝑥 + 1 = 𝑥 − 1
ou

2𝑥 + 1 = −(𝑥 − 1)
𝐞

𝒙 − 𝟏 ≥ 𝟎

→  

{
 
 

 
 2𝑥 − 𝑥 = −1 − 1

ou
2𝑥 + 1 = −𝑥 + 1

𝐞
𝒙 ≥ 𝟏

→  

{
 
 

 
 𝑥 = −2

ou
3𝑥 = 0
𝐞

𝒙 ≥ 𝟏

→  

{
 
 

 
 𝑥 = −2

ou
𝑥 = 0
𝐞

𝒙 ≥ 𝟏

 

Apesar de obtermos duas soluções para o problema, nenhuma delas é válida. Isso porque 𝒙 = −𝟐 e 𝒙 = 𝟎 
não satisfazem a condição 𝒙 ≥ 𝟏. Portanto, o conjunto solução é vazio: 

𝑆 = ∅ 

• 𝒙𝟐 + |𝒙| − 𝟐 = 𝟎 

Para resolver essa equação, devemos nos lembrar da seguinte propriedade: 

|𝑥|2 = 𝑥2 

Portanto, a equação em questão é dada por: 

|𝒙|𝟐 + |𝒙| − 𝟐 = 𝟎 

Podemos realizar a substituição 𝑦 = |𝑥|. Ficamos com: 

𝑦2 + 𝑦 − 2 = 0 

Para encontrar as raízes, vamos utilizar a fórmula de Bhaskara. Temos: 

 𝑎 = 2 

 𝑏 = −5 

 𝑐 = 2 

O discriminante é dado por: 

 ∆ = 𝑏2 − 4𝑎𝑐 

 = (1)2 − 4.1. (−2) 

 = 1 − (−8) 

 = 9 

As raízes são: 

 𝑦 =
−𝑏±√∆

2𝑎
 

 𝑦 =
−1±√9

2.1
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 𝑦 =
−1±3

2
 

 𝒚𝟏 = 𝟏  ;  𝒚𝟐 = −𝟐 

Voltando ao problema, temos que 𝑦 = |𝑥|. Logo: 

• |𝑥| = 𝟏 → 𝒙 = 𝟏  ou 𝒙 = −𝟏. 

• |𝑥| = −𝟐 → Não há 𝒙 que satisfaça essa igualdade, pois |𝒙| ≥ 𝟎. 

Portanto, o conjunto solução da equação 𝒙𝟐 + |𝒙| − 𝟐 = 𝟎 é: 

𝑆 = {−1; 1} 

• |𝟔𝒙 + 𝟑| + |𝟐𝒙 − 𝟏| = 𝟐 

Devemos utilizar a definição de módulo para resolver esse problema. 

Vamos verificar o sinal de 𝟔𝒙 + 𝟑: 

𝟔𝒙 + 𝟑 ≥ 𝟎   →    6𝑥 ≥ −3   →    𝒙 ≥ −
𝟏

𝟐
 

𝟔𝒙 + 𝟑 < 𝟎   →   6𝑥 < −3  →   𝒙 < −
𝟏

𝟐
 

Agora vamos verificar o sinal de 𝟐𝒙 − 𝟏: 

𝟐𝒙 − 𝟏 ≥ 𝟎  → 2𝑥 ≥ 1  → 𝒙 ≥
𝟏

𝟐
 

𝟐𝒙 − 𝟏 < 𝟎   → 2𝑥 < 1  → 𝒙 <
𝟏

𝟐
 

Logo, devemos analisar a equação |𝟔𝒙 + 𝟑| + |𝟐𝒙 − 𝟏| = 𝟐 para três casos: 

• 𝒙 < −
𝟏

𝟐
; 

 

• −
𝟏

𝟐
≤ 𝒙 <

𝟏

𝟐
; e 

 

• 𝒙 ≥
𝟏

𝟐
. 

Podemos inserir esses casos em uma tabela: 
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Caso 1: 𝒙 < −
𝟏

𝟐
 

| 𝟔𝒙 + 𝟑⏟    |
𝐍𝐞𝐠𝐚𝐭𝐢𝐯𝐨

+ | 𝟐𝒙 − 𝟏⏟    |
𝐍𝐞𝐠𝐚𝐭𝐢𝐯𝐨

= 𝟐  

−(6𝑥 + 3) − (2𝑥 − 1) = 2 

−8𝑥 − 3 + 1 = 2 

−8𝑥 = 2 + 3 − 1 

−8𝑥 = 4 

𝑥 = −
1

2
 

Note que essa solução para 𝑥 não é válida, pois ela não está compreendida no intervalo 𝒙 < −
𝟏

𝟐
. Apesar 

disso, veremos que essa solução será incluída no próximo caso, em que −
1

2
≤ 𝑥 <

1

2
. 

Caso 2: −
𝟏

𝟐
≤ 𝒙 <

𝟏

𝟐
 

| 𝟔𝒙 + 𝟑⏟    |
𝐏𝐨𝐬𝐢𝐭𝐢𝐯𝐨

+ | 𝟐𝒙 − 𝟏⏟    |
𝐍𝐞𝐠𝐚𝐭𝐢𝐯𝐨

= 𝟐  

(6𝑥 + 3) − (𝟐𝒙 − 𝟏) = 2 

4𝑥 + 3 + 1 = 2 

4𝑥 = 2 − 3 − 1 

4𝑥 = −2 

𝑥 = −
1

2
 

Note que essa solução para 𝑥 é válida, pois ela está compreendida no intervalo −
𝟏

𝟐
≤ 𝒙 <

𝟏

𝟐
. 

Caso 3: 𝒙 ≥
𝟏

𝟐
 

| 𝟔𝒙 + 𝟑⏟    |
𝐏𝐨𝐬𝐢𝐭𝐢𝐯𝐨

+ | 𝟐𝒙 − 𝟏⏟    |
𝐏𝐨𝐬𝐢𝐭𝐢𝐯𝐨

= 𝟐  

(6𝑥 + 3) + (2𝑥 − 1) = 2 

8𝑥 = 2 − 3 + 1 

8𝑥 = 0 

𝑥 = 0 
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Note que essa solução para 𝑥 não é válida, pois ela não é maior do que 
𝟏

𝟐
. 

 

Portanto, o conjunto solução da equação |𝟔𝒙 + 𝟑| + |𝟐𝒙 − 𝟏| = 𝟐 é: 

𝑆 = {−
1

2
} 

Raízes de uma função modular 

Pessoal, ainda vamos tratar sobre funções modulares no decorrer dessa aula.  

Nesse momento, é importante que você saiba obter as raízes de uma função modular. Para tanto, basta 
igualar a função a zero. Por exemplo: 

Calcule as raízes de 𝒇(𝒙) = |𝒙 − 𝟏| − 𝟑 

Para calcular as raízes, basta fazer 𝑓(𝑥) = 0. 

|𝑥 − 1| − 3 = 0 

 

 →  |𝑥 − 1| = 3 → {
𝑥 − 1 = 3   

ou
𝑥 − 1 = −3

 →  {
𝑥 = 4   
ou

𝑥 = −2
   

 

Portanto, as raízes da função 𝑓(𝑥) são 4 e −2. 
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INEQUAÇÕES MODULARES 

 
 
 

Módulo de 𝑓(𝑥) menor do que uma constante   
 

 |𝒇(𝒙)| < 𝒌      − 𝒌 < 𝒇(𝒙) < 𝒌   
 

 {
𝒇(𝒙) > −𝒌

𝐞
𝒇(𝒙) < 𝒌

  

 
Essa propriedade também vale para o caso em que |𝒇(𝒙)| é menor ou igual a uma constante. 
 

Módulo de 𝑓(𝑥) maior do que uma constante 
 

 |𝒇(𝒙)| > 𝒌     {
𝒇(𝒙) < −𝒌

𝐨𝐮
𝒇(𝒙) > 𝒌

 

 
Essa propriedade também vale para o caso em que |𝒇(𝒙)| é maior ou igual a uma constante. 
 

 
 
Uma inequação modular pode não se encaixar nas propriedades que acabamos de ver. Nesse caso, 
devemos utilizar a definição de módulo para resolver o problema.  

 

  

Inequações modulares 

Propriedades para inequações modulares 

 

Resolução de inequações modulares pela definição de módulo 
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Propriedades para inequações modulares 

Inequações modulares são inequações que apresentam uma operação de módulo. Exemplos: 

• |𝟑𝒙 − 𝟏| > 𝟒; 

• |𝟑𝒙| ≤ 𝟐;  

• ||𝟑𝒙 + 𝟏| − 𝟐| ≤ 𝟏; e 

• |𝟐𝒙 − 𝟏| < 𝒙. 

Vamos conhecer duas propriedades que nos ajudam a resolver inequações modulares. 

Módulo de 𝒇(𝒙) menor do que uma constante 

Considere que 𝒙 é a variável que se quer determinar, 𝒌 é uma constante real maior do que zero e 𝒇(𝒙) é 
uma função com a variável 𝑥. 

Nesse caso, se |𝒇(𝒙)| é menor do que uma constante 𝒌, 𝒇(𝒙) deve estar entre –𝒌 e 𝒌. Em outras palavras: 

|𝒇(𝒙)| < 𝒌   − 𝒌 < 𝒇(𝒙) < 𝒌   

 {
𝒇(𝒙) > −𝒌

𝐞
𝒇(𝒙) < 𝒌

 

Vejamos um exemplo para compreender melhor a propriedade: 

Obtenha o conjunto solução da inequação |𝒙| < 𝟐 

 

Note que qualquer número 𝑥 maior ou igual a 2 não pode ser solução. Por exemplo, se fizermos 𝑥 = 3, é 
errado dizer que |𝑥| < 2, pois teremos |3| < 2, isto é, 3 < 2. 

Além disso, qualquer número 𝑥 menor ou igual a −2 também não pode ser solução. Por exemplo, se fizermos 
𝑥 = −3, é errado dizer que |𝑥| < 2, pois teremos |−3| < 2, isto é, 3 < 2. 

 

Logo, para que tenhamos |𝒙| < 𝟐, 𝒙 deve estar entre −2 e 2: 

|𝑥| < 2   − 2 < 𝑥 < 2 

 

Portanto, o conjunto solução da inequação é: 

𝑆 = {𝑥 ∈ ℝ / −2 < 𝑥 < 2} 

Ressalta-se que essa propriedade também vale para o caso em que |𝒇(𝒙)| é menor ou igual a uma constante 
𝒌. Vejamos um outro exemplo: 
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Obtenha o conjunto solução da inequação |𝟐𝒙 − 𝟏| ≤ 𝟑 

 

Aplicando a propriedade aprendida, temos: 

|2𝑥 − 1| ≤ 3 → −3 ≤ 2𝑥 − 1 ≤ 3 → {
2𝑥 − 1 ≥ −3

𝐞
2𝑥 − 1 ≤ 3

→ {
2𝑥 ≥ −3 + 1

𝐞
2𝑥 ≤ 3 + 1

→ {
2𝑥 ≥ −2

𝐞
2𝑥 ≤ 4

→ {
𝑥 ≥ −1
𝐞

𝑥 ≤ 2
 

 

Portanto, o conjunto solução da inequação é: 

𝑆 = {𝑥 ∈ ℝ / 𝑥 ≥ −1 𝐞 𝑥 ≤ 2} = {𝑥 ∈ ℝ / −1 ≤ 𝑥 ≤ 2} 

Módulo de 𝒇(𝒙) maior do que uma constante 

Uma outra situação que pode ocorrer é |𝒇(𝒙)| > 𝒌. Nesse caso, 𝒇(𝒙) deve ser menor do que −𝒌 ou então 
𝒇(𝒙) deve ser maior do que 𝒌. Em outras palavras: 

|𝒇(𝒙)| > 𝒌   {
𝒇(𝒙) < −𝒌

𝐨𝐮
𝒇(𝒙) > 𝒌

 

Vejamos um exemplo para compreender melhor a propriedade: 

Obtenha o conjunto solução da inequação |𝒙| > 𝟐 

 

Note que qualquer número 𝑥 entre −2 e 2 não pode ser solução.  

Por exemplo, se fizermos 𝑥 = −1, é errado dizer que |𝑥| > 2, pois teremos |−1| < 2, isto é, 1 < 2.  

Um outro exemplo seria 𝑥 = 1, que da mesma forma faz com que seja errado dizer que |𝑥| > 2, pois teremos 
|1| < 2, isto é, 1 < 2. 

 

Logo, para que tenhamos |𝒙| > 𝟐, 𝒙 deve ser menor do que −2 ou maior do que 2: 

|𝒙| > 𝟐  →  {
𝒙 < −𝟐
𝐨𝐮
𝒙 > 𝟐

 

 

Portanto, o conjunto solução da inequação é: 

𝑆 = {𝑥 ∈ ℝ / 𝑥 < −2 𝐨𝐮 𝑥 > 2} 

Ressalta-se que essa propriedade também vale para o caso em que |𝒇(𝒙)| é maior ou igual a uma constante 
𝒌. Vejamos um outro exemplo: 
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Obtenha o conjunto solução da inequação |𝟐𝒙 − 𝟏| ≥ 𝟑 

 

Aplicando a propriedade aprendida, temos: 

|2𝑥 − 1| ≥ 3 →  {
2𝑥 − 1 ≤ −3

𝐨𝐮
2𝑥 − 1 ≥ 3

→ {
2𝑥 ≤ −3 + 1

𝐨𝐮
2𝑥 ≥ 3 + 1

→ {
2𝑥 ≤ −2
𝐨𝐮

2𝑥 ≥ 4
→ {

𝑥 ≤ −1
𝐨𝐮
𝑥 ≥ 2

 

 

Portanto, o conjunto solução da inequação é: 

𝑆 = {𝑥 ∈ ℝ / 𝑥 ≤ −1 𝐨𝐮 𝑥 ≥ 2} 

Resolução de inequações modulares pela definição de módulo 

Pessoal, algumas vezes as inequações modulares não se encaixam nas propriedades que acabamos de ver. 
Nesse caso, devemos utilizar a definição de módulo para resolver o problema. Vamos a um exemplo: 

|𝟐𝒙 − 𝟏| ≤ 𝒙 

Note que as propriedades que aprendemos não nos ajudam, pois não se trata do caso em que módulo de 
𝒇(𝒙) é menor do que uma constante.  

Devemos, portanto, utilizar a definição de módulo para resolver o problema: 

• Se o que está dentro das duas barras é positivo ou zero, mantenha o que está dentro 
das barras; ou 

• Se o que está dentro das duas barras é negativo, insira um sinal de menos. 

Vamos verificar o sinal de 𝟐𝒙 − 𝟏: 

𝟐𝒙 − 𝟏 ≥ 𝟎  → 2𝑥 ≥ 1 → 𝒙 ≥
𝟏

𝟐
 

𝟐𝒙 − 𝟏 < 𝟎   → 2𝑥 < 1  → 𝒙 <
𝟏

𝟐
 

Logo, devemos resolver a inequação |𝟐𝒙 − 𝟏| ≤ 𝒙 para dois casos: 

• 𝒙 <
𝟏

𝟐
; e 

 

• 𝒙 ≥
𝟏

𝟐
. 
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Caso 1: 𝒙 <
𝟏

𝟐
 

| 𝟐𝒙 − 𝟏⏟    |
𝐍𝐞𝐠𝐚𝐭𝐢𝐯𝐨

≤ 𝒙  

−(2𝑥 − 1) ≤ 𝑥 

−2𝑥 + 1 ≤ 𝑥 

1 ≤ 3𝑥 

3𝑥 ≥ 1 

𝑥 ≥
1

3
 

Como nesse caso devemos ter 𝒙 <
𝟏

𝟐
, a solução do caso 1 é: 

𝑆1 = {𝑥 ∈ ℝ / 𝑥 ≥
1

3
 𝐞 𝑥 <

1

2
}  = {𝑥 ∈ ℝ / 

𝟏

𝟑
≤ 𝒙 <

𝟏

𝟐
} 

 

Caso 2: 𝒙 ≥
𝟏

𝟐
 

| 𝟐𝒙 − 𝟏⏟    |
𝐏𝐨𝐬𝐢𝐭𝐢𝐯𝐨

≤ 𝒙  

2𝑥 − 1 ≤ 𝑥 

2𝑥 − 𝑥 ≤ 1 

𝑥 ≤ 1 

Como nesse caso devemos ter 𝒙 ≥
𝟏

𝟐
, a solução do caso 2 é: 

𝑆2 = {𝑥 ∈ ℝ / 𝑥 ≥
1

2
 𝐞 𝑥 ≤ 1}  = {𝑥 ∈ ℝ / 

𝟏

𝟐
≤ 𝒙 ≤ 𝟏} 

 

Solução da inequação modular 

O conjunto solução da inequação |𝟐𝒙 − 𝟏| ≤ 𝒙 é a união dos dois casos: 

𝑆 = 𝑆1 ∪ 𝑆2 = {𝑥 ∈ ℝ / 
𝟏

𝟑
≤ 𝒙 ≤ 𝟏} 
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Exemplos de inequações modulares 

Vamos resolver algumas inequações modulares. 

• |𝟑𝒙 + 𝟏| < 𝟐 

Temos uma inequação modular em que o módulo de 𝒇(𝒙) é menor do que uma constante. Nesse caso, 
devemos proceder do seguinte modo: 

|𝑓(𝑥)| < 𝑘   − 𝑘 < 𝑓(𝑥) < 𝑘   

 {
𝑓(𝑥) > −𝑘

𝐞
𝑓(𝑥) < 𝑘

 

Logo: 

|3𝑥 + 1| < 2 → −2 < 3𝑥 + 1 < 2 → {
3𝑥 + 1 > −2   

𝐞
3𝑥 + 1 < 2

 →  {
3𝑥 > −3   

𝐞
3𝑥 < 1

 →  {

𝑥 > −1   
𝐞

𝑥 <
1

3
      

 

Portanto, o conjunto solução é: 

𝑆 = {𝑥 ∈ ℝ / 𝑥 > −1 𝐞 𝑥 <
1

3
} = {𝑥 ∈ ℝ /−1 < 𝑥 <

1

3
} 

• |−𝟐𝒙 + 𝟑| ≥ 𝟏 

Temos uma inequação modular em que o módulo de 𝒇(𝒙) é maior ou igual a uma constante. Nesse caso, 
devemos proceder do seguinte modo: 

|𝑓(𝑥)| ≥ 𝑘   {
𝑓(𝑥) ≤ −𝑘

𝐨𝐮
𝑓(𝑥) ≥ 𝑘

 

Logo: 

|−2𝑥 + 3| ≥ 1 →  {
−2𝑥 + 3 ≤ −1

𝐨𝐮
−2𝑥 + 3 ≥ 1

→ {
−2𝑥 ≤ −4

𝐨𝐮
−2𝑥 ≥ −2

→ {
2𝑥 ≥ 4
𝐨𝐮

2𝑥 ≤ 2
→ {

𝑥 ≥ 2
𝐨𝐮
𝑥 ≤ 1

 

Portanto, o conjunto solução é: 

𝑆 = {𝑥 ∈ ℝ / 𝑥 ≤ 1 𝐨𝐮 𝑥 ≥ 2} 
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• |𝟓𝒙 + 𝟐| > 𝟎 

Sabemos que o módulo de um número real é sempre maior ou igual a zero. Essa propriedade costuma ser 
descrita por meio da seguinte desigualdade: 

|𝑥| ≥ 0 

Logo, a única possibilidade de |𝟓𝒙 + 𝟐| não ser maior que zero é quando |𝟓𝒙 + 𝟐| é igual a zero. 

|5𝑥 + 2| = 0 

5𝑥 + 2 = 0 

5𝑥 = −2 

𝑥 = −
2

5
 

Logo, |𝟓𝒙 + 𝟐| > 𝟎 quando 𝒙 é qualquer número real exceto −
𝟐

𝟓
. Portanto, o conjunto solução da 

inequação é: 

𝑆 = {𝑥 ∈ ℝ / 𝑥 ≠ −
2

5
} 

• |𝒙 + √𝟐| > −𝟑 

Sabemos que o módulo de um número real é sempre maior ou igual a zero.  

Logo, |𝒙 + √𝟐| sempre será maior do que −𝟑, pois será sempre maior ou igual a zero. Portanto, o conjunto 

solução da inequação é: 

𝑆 = ℝ 

• |𝒙 − 𝟐| ≤ −𝟏 

Sabemos que o módulo de um número real é sempre maior ou igual a zero.  

Logo, |𝑥 − 2| nunca será menor ou igual a −1. Portanto, o conjunto solução da inequação é: 

𝑆 = ∅ 
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• |𝒙𝟐 − 𝟓𝒙| < 𝟔 

Temos uma inequação modular em que o módulo de 𝒇(𝒙) é menor do que constante. Nesse caso, devemos 
proceder do seguinte modo: 

|𝑓(𝑥)| < 𝑘   − 𝑘 < 𝑓(𝑥) < 𝑘  

  {
𝑓(𝑥) > −𝑘

𝐞
𝑓(𝑥) < 𝑘

 

Logo: 

|𝑥2 − 5𝑥| < 6 → −6 < 𝑥2 − 5𝑥 < 6 → {
𝑥2 − 5𝑥 > −6

𝐞
𝑥2 − 5𝑥 < 6

 → {
𝑥2 − 5𝑥 + 6 > 0

𝐞
𝑥2 − 5𝑥 − 6 < 0

  

Pessoal, a parte da resolução que está relacionada a módulo acaba por aqui. Agora, devemos encontrar o 
conjunto solução que respeite simultaneamente as duas inequações do segundo grau encontradas. 

 

Primeira inequação: 𝒙𝟐 − 𝟓𝒙 + 𝟔 > 𝟎 

Para resolver essa primeira inequação, devemos encontrar as raízes de 𝒙𝟐 − 𝟓𝒙 + 𝟔. 

Para encontrar as raízes, vamos usar a fórmula de Bhaskara. Temos: 

 𝑎 = 1 

 𝑏 = −5 

 𝑐 = 6 

O discriminante é dado por: 

 ∆ = 𝑏2 − 4𝑎𝑐 

 = (−5)2 − 4 × 1 × 6 

 = 25 − 24 

 = 1 

As raízes são: 

 𝑥 =
−𝑏±√∆

2𝑎
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 𝑥 =
−(−5)±√1

2×1
 

 𝑥 =
5±1

2
 

 𝑥1 = 2   ;    𝑥2 = 3 

Agora que temos as raízes, podemos descrever a parábola. Como o coeficiente 𝒂 é positivo, a concavidade 
da parábola é para cima. 

 

 

Portanto, 𝑥2 − 5𝑥 + 6 > 0 quando 𝒙 < 𝟐 ou 𝒙 > 𝟑. 

Logo, conjunto solução dessa primeira inequação é: 

𝑆1 = {𝑥 ∈ ℝ / 𝑥 < 2 𝐨𝐮 𝑥 > 3} 

 

Segunda inequação: 𝒙𝟐 − 𝟓𝒙 − 𝟔 < 𝟎 

Para resolver essa segunda inequação, devemos encontrar as raízes de 𝒙𝟐 − 𝟓𝒙 − 𝟔. 

Para encontrar as raízes, vamos usar a fórmula de Bhaskara. Temos: 

 𝑎 = 1 

 𝑏 = −5 

 𝑐 = −6 

O discriminante é dado por: 

 ∆ = 𝑏2 − 4𝑎𝑐 

 = (−5)2 − 4 × 1 × (−6) 

 = 25 − (−24) 
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 = 49 

As raízes são: 

 𝑥 =
−𝑏±√∆

2𝑎
 

 𝑥 =
−(−5)±√49

2×1
 

 𝑥 =
5±7

2
 

 𝑥1 = 6   ;    𝑥2 = −1 

Agora que temos as raízes, podemos descrever a parábola. Como o coeficiente 𝒂 é positivo, a concavidade 
da parábola é para cima. 

 

Portanto, 𝑥2 − 5𝑥 − 6 < 0 quando −𝟏 < 𝒙 < 𝟔. 

Logo, conjunto solução dessa segunda inequação é: 

𝑆2 = {𝑥 ∈ ℝ /−1 < 𝑥 < 6} 

 

Solução da inequação modular 

Vimos que a inequação |𝒙𝟐 − 𝟓𝒙| < 𝟔 corresponde a: 

{
𝑥2 − 5𝑥 + 6 > 0

𝐞
𝑥2 − 5𝑥 − 6 < 0

 

Logo, conjunto solução da inequação |𝒙𝟐 − 𝟓𝒙| < 𝟔 é a interseção das soluções das duas inequações do 

segundo grau: 

𝑆 = 𝑆1 ∩ 𝑆2 
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Portanto, o conjunto solução da inequação |𝒙𝟐 − 𝟓𝒙| < 𝟔 é: 

𝑆 = {𝑥 ∈ ℝ / −1 < 𝑥 < 2 𝐨𝐮 3 < 𝑥 < 6} = ] − 1; 2[ ∪ ]3; 6[ 

• ||𝟑𝒙 + 𝟏| − 𝟐| ≤ 𝟏 

Temos uma inequação modular em que o módulo de 𝒇(𝒙) é menor ou igual a uma constante. Nesse caso, 
devemos proceder do seguinte modo: 

|𝑓(𝑥)| ≤ 𝑘   − 𝑘 ≤ 𝑓(𝑥) ≤ 𝑘   

 {
𝑓(𝑥) ≥ −𝑘

𝐞
𝑓(𝑥) ≤ 𝑘

 

Logo: 

||3𝑥 + 1| − 2| ≤ 1 → {
|3𝑥 + 1| − 2 ≥ −1

𝐞
|3𝑥 + 1| − 2 ≤ 1

 → {
|3𝑥 + 1| ≥ 1

𝐞
|3𝑥 + 1| ≤ 3

 

 

Primeira inequação: |𝟑𝒙 + 𝟏| ≥ 𝟏 

|3𝑥 + 1| ≥ 1 →  {
3𝑥 + 1 ≥ 1

𝐨𝐮
3𝑥 + 1 ≤ −1

→  {
3𝑥 ≥ 0
𝐨𝐮

3𝑥 ≤ −2
→ {

𝑥 ≥ 0
𝐨𝐮

𝑥 ≤ −
2

3

 

Logo, conjunto solução dessa primeira inequação é: 

𝑆1 = {𝑥 ∈ ℝ/𝑥 ≤ −
2

3
 𝐨𝐮 𝑥 ≥ 0} 
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Segunda inequação: |𝟑𝒙 + 𝟏| ≤ 𝟑 

|3𝑥 + 1| ≤ 3 →  −3 ≤ 3𝑥 + 1 ≤ 3 → {
3𝑥 + 1 ≤ 3

𝐞
3𝑥 + 1 ≥ −3

→ {
3𝑥 ≤ 2
𝐞

3𝑥 ≥ −4
→

{
 
 

 
 𝑥 ≤

2

3
𝐞

𝑥 ≥ −
4

3

 

Logo, conjunto solução dessa segunda inequação é: 

𝑆2 = {𝑥 ∈ ℝ / 𝑥 ≥ −
4

3
 𝐞 𝑥 ≤

2

3
} = {𝑥 ∈ ℝ /−

4

3
≤ 𝑥 ≤

2

3
} 

 

Solução da inequação modular 

Vimos que a inequação ||𝟑𝒙 + 𝟏| − 𝟐| ≤ 𝟏 corresponde a: 

{
|3𝑥 + 1| ≥ 1

𝐞
|3𝑥 + 1| ≤ 3

 

Note que o conjunto solução da inequação ||𝟑𝒙 + 𝟏| − 𝟐| ≤ 𝟏 será a interseção da solução das duas 

inequações. 

𝑆 = 𝑆1 ∩ 𝑆2 

 

Portanto, o conjunto solução da inequação ||𝟑𝒙 + 𝟏| − 𝟐| ≤ 𝟏  é: 

𝑆 = {𝑥 ∈ ℝ / −
4

3
≤ 𝑥 ≤

2

3
 𝐨𝐮 0 ≤ 𝑥 ≤

2

3
} 
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FUNÇÃO MODULAR 

 
 
 
A função modular 𝑓(𝑥) pode ser definida do seguinte modo, sendo 𝒒(𝒙) uma função qualquer: 
 

𝑓:ℝ → ℝ  
 

𝑓(𝑥) = |𝑞(𝑥)| = {
𝒒(𝒙); 𝒒(𝒙) ≥ 𝟎

−𝒒(𝒙); 𝒒(𝒙) < 𝟎
  

 
O gráfico da função 𝑓(𝑥) será descrito da seguinte forma: 
 
• Quando 𝒒(𝒙) é positivo ou zero, mantenha o gráfico de 𝑞(𝑥); 
• Quando 𝒒(𝒙) é negativo, devemos inserir um sinal de menos. Nesse caso, o gráfico da função original 
𝑞(𝑥) deve ser "espelhado" com relação ao eixo 𝒙. 
 
 
 
Ao se aplicar um módulo na variável 𝒙, o novo gráfico é obtido do seguinte modo: 
 
• Para 𝒙 ≥ 𝟎, o novo gráfico é igual ao gráfico original; e 
• Para 𝒙 negativo, o novo gráfico é um "espelho", com relação ao eixo 𝒚, do caso 𝑥 ≥ 0. 
 
 
 
Ao somar ou subtrair uma constante de uma função qualquer, estamos transladando verticalmente para 
cima ou para baixo o gráfico dessa função. 
 
 
 
Ao somar ou subtrair uma constante da variável 𝒙 de uma função qualquer, estamos transladando 
horizontalmente para a esquerda ou para a direita o gráfico dessa função. 

  

Função modular 

Função modular por meio da definição de módulo 

Translação vertical 

Translação horizontal 

Módulo na variável 𝒙 
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Função modular por meio da definição de módulo 

Pessoal, vimos que o módulo ou o valor absoluto de 𝑥 é representado por |𝑥| e corresponde a: 

• 𝒙, quando 𝑥 é maior ou igual a zero; e 

• −𝒙, quando 𝑥 é menor do que zero. 

Vimos ainda que, de modo mais formal, podemos escrever: 

|𝑥| = {
𝒙;   𝒙 ≥ 𝟎   
−𝒙;   𝒙 < 𝟎

 

Considere agora uma função 𝒒(𝒙) qualquer, podendo ser, por exemplo, a seguinte função quadrática:  

𝑞(𝑥) = 𝑥2 − 5𝑥 + 6 

A função modular 𝑓(𝑥) pode ser definida do seguinte modo: 

𝑓:ℝ → ℝ 

𝑓(𝑥) = |𝑞(𝑥)| = {
𝒒(𝒙); 𝒒(𝒙) ≥ 𝟎

−𝒒(𝒙); 𝒒(𝒙) < 𝟎
 

O gráfico da função 𝑓(𝑥) será descrito da seguinte forma: 

• Quando 𝑞(𝑥) é positivo ou zero, mantenha o gráfico de 𝑞(𝑥); 
• Quando 𝑞(𝑥) é negativo, devemos inserir um sinal de menos. Nesse caso, o gráfico da função 

original 𝑞(𝑥) deve ser "espelhado" com relação ao eixo 𝒙. 

Vejamos alguns exemplos. 
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Construa o gráfico de 𝒇(𝒙) = |𝒙|. 

 

Sabemos que a função 𝒒(𝒙) = 𝒙 pode ser desenhada da seguinte forma: 

 

Ao aplicar o módulo na função 𝒒(𝒙) = 𝒙, temos a função modular 𝒇(𝒙) = |𝒙|. Note que, para os casos em 
que a função original era negativa, o gráfico foi "espelhado" com relação ao eixo 𝑥. 
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Construa o gráfico de 𝒇(𝒙) = |𝟐𝒙 + 𝟏|. 

 

Sabemos que a função 𝒒(𝒙) = 𝟐𝒙 + 𝟏 pode ser desenhada da seguinte forma: 

 

 

Ao aplicar o módulo na função 𝒒(𝒙) = 𝟐𝒙 + 𝟏, temos a função modular 𝒇(𝒙) = |𝟐𝒙 + 𝟏|. Note que, para 
os casos em que a função original era negativa, o gráfico foi "espelhado" com relação ao eixo 𝑥. 
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Construa o gráfico de 𝒇(𝒙) = |𝒙𝟐 − 𝟓𝒙 + 𝟔|. 

 

As raízes da função quadrática 𝒒(𝒙) = 𝒙𝟐 − 𝟓𝒙 + 𝟔 são 2 e 3. Como o coeficiente 𝑎 é maior do que zero, a 
concavidade da parábola é para cima, e função pode ser desenhada da seguinte forma: 

 

 

Ao aplicar o módulo na função 𝒒(𝒙) = 𝒙𝟐 − 𝟓𝒙 + 𝟔, temos a função modular 𝒇(𝒙) = |𝒙𝟐 − 𝟓𝒙 + 𝟔|. Note 
que, para os casos em que a função original era negativa, o gráfico foi "espelhado" com relação ao eixo 𝑥. 
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Construa o gráfico de 𝒇(𝒙) = |−𝒙𝟐 + 𝟑𝒙 − 𝟐|. 

 

As raízes da função quadrática 𝒒(𝒙) = −𝒙𝟐 + 𝟑𝒙 − 𝟐 são 1 e 2. Como o coeficiente 𝑎 é menor do que zero, 
a concavidade da parábola é para baixo, e função pode ser desenhada da seguinte forma: 

 

 

 

Ao aplicar o módulo na função 𝒒(𝒙) = −𝒙𝟐 + 𝟑𝒙 − 𝟐, temos a função modular 𝒇(𝒙) = | − 𝒙𝟐 + 𝟑𝒙 − 𝟐|. 
Note que, para os casos em que a função original era negativa, o gráfico foi "espelhado" com relação ao eixo 
𝑥. 
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Construa o gráfico de 𝒇(𝒙) = |𝒄𝒐𝒔 𝒙|. 

 

Pessoal, 𝒒(𝒙) = 𝐜𝐨𝐬 𝒙 é uma função trigonométrica, que será vista em aula própria, caso faça parte do edital. 
Inserimos ela aqui apenas para ilustrar o que a acontece quando inserimos um módulo. 

A função 𝒒(𝒙) = 𝐜𝐨𝐬 𝒙 apresenta o seguinte gráfico: 

 

 

Ao aplicar o módulo na função 𝒒(𝒙) = 𝒄𝒐𝒔 𝒙 , temos a função modular 𝒇(𝒙) = |𝒄𝒐𝒔 𝒙|. Note que, para os 
casos em que a função original era negativa, o gráfico foi "espelhado" com relação ao eixo 𝑥. 
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Módulo na variável 𝒙 

Ao se aplicar um módulo na variável 𝒙, o novo gráfico é obtido do seguinte modo: 

• Para 𝒙 ≥ 𝟎, o novo gráfico é igual ao gráfico original; e 

• Para 𝒙 negativo, o novo gráfico é um "espelho", com relação ao eixo 𝒚, do caso 𝑥 ≥ 0. 

Vejamos um exemplo: 

Construa o gráfico de 𝒇(𝒙) = |𝒙|𝟐 − 𝟑|𝒙| + 𝟐. 

 

As raízes da função quadrática 𝒒(𝒙) = 𝒙𝟐 − 𝟑𝒙 + 𝟐 são 1 e 2. Como o coeficiente 𝑎 é maior do que zero, a 
concavidade da parábola é para cima, e função pode ser desenhada da seguinte forma: 

 

Ao aplicar o módulo na variável 𝒙, temos a função 𝒇(𝒙) = |𝒙|𝟐 − 𝟑|𝒙| + 𝟐. Note que, para os casos em que 
𝑥 é negativo, o novo gráfico é um "espelho" com relação ao eixo 𝒚. 
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Translação vertical 

Ao somar ou subtrair uma constante de uma função qualquer, estamos transladando verticalmente para 
cima ou para baixo o gráfico dessa função. Vejamos dois exemplos para o caso da função modular. 

Construa o gráfico de 𝒈(𝒙) = |𝒙| + 𝟏. 

 

Vimos que a função 𝒇(𝒙) = |𝒙| é representada da seguinte forma: 

 

 

Ao somar uma unidade à função 𝒇(𝒙) = |𝒙|, obtemos a função 𝒈(𝒙) = |𝒙| + 𝟏. Note que o gráfico é 
transladado verticalmente para cima em uma unidade. 
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Construa o gráfico de 𝒈(𝒙) = |𝒙𝟐 − 𝟓𝒙 + 𝟔| − 𝟐. 

 

Vimos que a função 𝒇(𝒙) = |𝒙𝟐 − 𝟓𝒙 + 𝟔| é representada da seguinte forma: 

 

Ao subtrair duas unidades da função 𝒇(𝒙) = |𝒙𝟐 − 𝟓𝒙 + 𝟔|, obtemos a função 𝒈(𝒙) = |𝒙𝟐 − 𝟓𝒙 + 𝟔| − 𝟐. 

Note que o gráfico é transladado verticalmente para baixo em duas unidades. 
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Translação horizontal 

Ao somar ou subtrair uma constante da variável 𝒙 de uma função qualquer, estamos transladando 
horizontalmente para a esquerda ou para a direita o gráfico dessa função. Vejamos dois exemplos para o 
caso da função modular: 

Construa o gráfico de 𝒈(𝒙) = |𝒙 − 𝟏|. 

 

Vimos que a função 𝒇(𝒙) = |𝒙| é representada da seguinte forma: 

 

 

Ao subtrair uma unidade da variável 𝑥, obtemos 𝒈(𝒙) = |𝒙 − 𝟏|. Note que o gráfico é transladado 
horizontalmente para a direita em uma unidade. 
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Construa o gráfico de 𝒈(𝒙) = |(𝒙 + 𝟏)𝟐 − 𝟓(𝒙 + 𝟏) + 𝟔|. 

 

Vimos que a função 𝒇(𝒙) = |𝒙𝟐 − 𝟓𝒙 + 𝟔| é representada da seguinte forma: 

 

 

Ao somar uma unidade da variável 𝑥, obtemos 𝒈(𝒙) = |(𝒙 + 𝟏)𝟐 − 𝟓(𝒙 + 𝟏) + 𝟔|. Note que o gráfico é 
transladado horizontalmente para a esquerda em uma unidade. 
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Outros exemplos 

Vamos realizar mais alguns exemplos de construção de gráficos. 

Construa o gráfico de 𝒅(𝒙) = −|𝒙𝟐 − 𝒙 − 𝟐| + 𝟏 

 

As raízes da função quadrática 𝒂(𝒙) = 𝒙𝟐 − 𝒙 − 𝟐 são −1 e 2. Como o coeficiente 𝑎 é maior do que zero, a 
concavidade da parábola é para cima, e função pode ser desenhada da seguinte forma: 

 

Ao aplicar o módulo na função 𝒂(𝒙) = 𝒙𝟐 − 𝒙 − 𝟐, temos a função 𝒃(𝒙) = |𝒙𝟐 − 𝒙 − 𝟐|. Note que, para os 
casos em que a função original era negativa, o gráfico foi "espelhado" com relação ao eixo 𝑥. 
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Ao multiplicar a função  𝒃(𝒙) = |𝒙𝟐 − 𝒙 − 𝟐| por −1, devemos espelhar toda a função com relação ao eixo 

𝒙.  Nesse caso 𝒄(𝒙) = −|𝒙𝟐 − 𝒙 − 𝟐| pode ser representada da seguinte forma: 

 

 

Ao somar uma unidade à função 𝒄(𝒙) = −|𝒙𝟐 − 𝒙 − 𝟐|, obtemos a função 𝒅(𝒙) = −|𝒙𝟐 + 𝟑𝒙 + 𝟐| + 𝟏. 

Note que o gráfico é transladado verticalmente para cima em uma unidade. 
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Construa o gráfico de 𝒉(𝒙) = ||𝒙𝟐 − 𝟓𝒙 + 𝟔| − 𝟐|. 

 

Vimos que a função 𝒇(𝒙) = |𝒙𝟐 − 𝟓𝒙 + 𝟔| é representada da seguinte forma: 

 

 

Vimos também que, ao subtrair duas unidades da função 𝒇(𝒙) = |𝒙𝟐 − 𝟓𝒙 + 𝟔|, obtemos a função 𝒈(𝒙) =

|𝒙𝟐 − 𝟓𝒙 + 𝟔| − 𝟐. O gráfico é transladado verticalmente para baixo em duas unidades. 
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Para obter 𝒉(𝒙) = ||𝒙𝟐 − 𝟓𝒙 + 𝟔| − 𝟐|, devemos aplicar o módulo em 𝒈(𝒙) = |𝒙𝟐 − 𝟓𝒙 + 𝟔| − 𝟐. Assim, 

para os casos em que 𝑔(𝑥) é negativa, devemos "espelhar" a função com relação ao eixo 𝑥. Ficamos com: 

 

Para finalizar a teoria de funções modulares, vamos a um último exemplo. 

Construa o gráfico de 𝒇(𝒙) = |𝒙 − 𝟏| + |𝟐𝒙 + 𝟏| 

 

Pessoal, nesse tipo de problema devemos recorrer à definição de módulo: 

• Se o que está dentro das duas barras é positivo ou zero, mantenha o que está dentro das barras; ou 

• Se o que está dentro das duas barras é negativo, insira um sinal de menos. 

 

Vamos verificar o sinal de 𝒙 − 𝟏: 

𝒙 − 𝟏 ≥ 𝟎 → 𝒙 ≥ 𝟏 

𝒙 − 𝟏 < 𝟎 →   𝒙 < 𝟏 

Agora verificar o sinal de 𝟐𝒙 + 𝟏: 

𝟐𝒙 + 𝟏 ≥ 𝟎 → 2𝑥 ≥ −1 → 𝒙 ≥ −
𝟏

𝟐
 

𝟐𝒙 + 𝟏 < 𝟎 → 2𝑥 < −1 → 𝒙 < −
𝟏

𝟐
 

 

Logo, devemos analisar a função 𝒇(𝒙) = |𝒙 − 𝟏| + |𝟐𝒙 + 𝟏| para três casos: 
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•  𝒙 < −
1

2
; 

•  −
1

2
≤ 𝒙 < 1; e 

•  𝒙 ≥ 1. 

 

Caso 1: 𝒙 < −
𝟏

𝟐
 

𝒇(𝒙) = | 𝒙 − 𝟏⏟  |
𝐍𝐞𝐠𝐚𝐭𝐢𝐯𝐨

+ | 𝟐𝒙 + 𝟏⏟    |
𝐍𝐞𝐠𝐚𝐭𝐢𝐯𝐨

 

= −(𝑥 − 1) − (2𝑥 + 1) 

= −3𝑥 

 

Caso 2: −
𝟏

𝟐
≤ 𝒙 < 𝟏 

𝒇(𝒙) = | 𝒙 − 𝟏⏟  |
𝐍𝐞𝐠𝐚𝐭𝐢𝐯𝐨

+ | 𝟐𝒙 + 𝟏⏟    |
𝐏𝐨𝐬𝐢𝐭𝐢𝐯𝐨

 

= −(𝑥 − 1) + (2𝑥 + 1) 

= 𝑥 + 2 

 

Caso 3: 𝒙 ≥ 𝟐 

𝒇(𝒙) = | 𝒙 − 𝟏⏟  |
𝐏𝐨𝐬𝐢𝐭𝐢𝐯𝐨

+ | 𝟐𝒙 + 𝟏⏟    |
𝐏𝐨𝐬𝐢𝐭𝐢𝐯𝐨

 

= (𝑥 − 1) + (2𝑥 + 1) 

= 3𝑥 

 

Portanto, pela definição de módulo, a função 𝒇(𝒙) = |𝒙 − 𝟏| + |𝟐𝒙 + 𝟏| pode ser descrita assim: 

 

𝑓(𝑥) =

{
 
 

 
 −3𝑥;      𝑥 < −

1

2
              

𝑥 + 2;   −
1

2
< 𝑥 < 1    

3𝑥;          𝑥 ≥ 1                

 

 

Para desenhar o gráfico de 𝑓(𝑥), devemos representar o gráfico de −𝟑𝒙 quando 𝒙 < −
𝟏

𝟐
, o gráfico de 𝒙 + 𝟐 

para −
𝟏

𝟐
< 𝒙 < 𝟏, e o gráfico de 𝟑𝒙 quando 𝒙 ≥ 𝟏. 
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QUESTÕES COMENTADAS - MULTIBANCAS 

Módulo de um número real 

Outras Bancas 

(MS CONCURSOS/SEAD Passo Fundo/2016) Considere a função 𝒇(𝒙) = 𝟏 – |𝒙 +  𝟐|. 

 O valor de 𝒇(–𝟑) é igual a: 

 a) –1 

 b) 0 

 c) 1 

 d) 2 

Comentários: 

Para obter o valor de 𝑓(−3), basta substituir 𝑥 por −3 na função apresentada. 

𝑓(𝑥) = 1 – |𝑥 +  2| 

𝑓(−3) = 1 − | − 3 + 2| 

= 1 − | − 3 + 2| 

= 1 − | − 1| 

= 1 − 1 

= 0 

Gabarito: Letra B. 

 

(ISAE/PM AM/2011) Se 𝒇(𝒙) = |𝒙 –  𝟑| − |𝟐 −  𝒙| então 𝒇(–  𝟐) é igual a: 

a) -1; 

b) 0; 

c) 1; 

d) 2. 

Comentários: 

Para obter o valor de 𝑓(−2), basta substituir 𝑥 por −2 na função apresentada. 

𝑓(𝑥) = | 𝑥 –  3 | – | 2 –  𝑥 | 

𝑓(−2) = |(−2) − 3| − |2 − (−2)| 
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= |−5| − |4| 

= 5 − 4 

= 1 

Gabarito: Letra C. 

 

 (DIRENS/EEAR/2012) Seja a função  f: ℝ → ℝ, definida por  𝒇(𝒙) = |𝟐𝒙𝟐 − 𝟑|. O valor de 𝟏 +  𝒇(–𝟏) é 

a) –1 

b) 0 

c) 1 

d) 2 

Comentários: 

Para obter o valor de 𝑓(−1), basta substituir 𝑥 por −1 na função apresentada. 

𝑓(𝑥) = |2𝑥2 − 3| 

𝑓(−1) = |2. (−1)2 − 3| 

= |2.1 − 3| 

= |2 − 3| 

= | − 1| 

= 1 

Portanto, o valor de 𝟏 + 𝒇(−𝟏) é: 

1 + 𝑓(−1) 

= 1 + 1 

= 2 

Gabarito: Letra D. 

 

(FAFIPA/Pref. Arapongas/2020) Considere a função real 𝒇(𝒙)  =  |𝒙 −  𝟒| que também pode ser 

representada pelo gráfico abaixo e assinale a alternativa CORRETA. 
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a) 𝑓(−1) = −5. 

b) 𝑓(−3) + 𝑓(3) = 0. 

c) 𝑓(−2) = 𝑓(10). 

d) 𝑓(4) = 𝑓(−4). 

e) 𝑓(0) = −4. 

Comentários: 

Vamos avaliar cada alternativa e assinalar a correta, lembrando que a função é dada por: 

𝑓(𝑥) = |𝑥 − 4| 

a) 𝑓(−1) = −5. ERRADO. 

𝑓(−1) = |−1 − 4| = |−5| = 5 

b) 𝑓(−3) + 𝑓(3) = 0. ERRADO. 

𝑓(−3) + 𝑓(3) 

= |−3 − 4| + |3 − 4| 

= |−7| + | − 1| 

= 7 + 1 

= 8 

c) 𝑓(−2) = 𝑓(10). CERTO. Este é o gabarito. 

𝑓(−2) = | − 2 − 4| = | − 6| = 6 

𝑓(10) = |10 − 4| = |6| = 6 

Logo, é correto afirmar que 𝒇(−𝟐) = 𝒇(𝟏𝟎). 

d) 𝑓(4) = 𝑓(−4). ERRADO. 

𝑓(4) = |4 − 4| = |0| = 0 

Equipe Exatas Estratégia Concursos

Aula 18

PRF (Policial) Raciocínio Lógico Matemático - 2023 (Pré-Edital)

www.estrategiaconcursos.com.br

07414656390 - Adriane cândido Monte

56

163



 

𝑓(−4) = |−4 − 4| = |−8| = 8 

Logo, 𝒇(𝟒) é diferente de 𝒇(−𝟒). 

e) 𝑓(0) = −4. ERRADO. 

𝑓(0) = |0 − 4| = |−4| = 4 

Gabarito: Letra C. 

 

(Instituto AOCP/IBC/2013) Quando 𝒙 ≤ 𝟐, então |𝒙 − 𝟐| + |𝟑 − 𝒙| é igual a: 

a) 5 

b) 2𝑥 − 5 

c) 2 

d) 𝑥 + 2 

e) −2𝑥 + 5 

Comentários: 

Para determinar a soma quando 𝒙 ≤ 𝟐, devemos saber: 

• Se |𝑥 − 2| corresponde a 𝑥 − 2 ou a −(𝑥 − 2) quando 𝒙 ≤ 𝟐; e 

• Se |3 − 𝑥| corresponde a 3 − 𝑥 ou a −(3 − 𝑥) quando 𝒙 ≤ 𝟐.  

Como podemos descrever |𝑥 − 2|? 

• Se 𝑥 − 2 é positivo ou zero, mantenha o que está dentro das barras; ou 
• Se 𝑥 − 2 é negativo, insira um sinal de menos. 

De um modo mais formal, podemos dizer: 

|𝑥 − 2| = {
𝒙 − 𝟐;         𝒙 − 𝟐 ≥ 𝟎         
−(𝒙 − 𝟐);  𝒙 − 𝟐 < 𝟎         

 

Desenvolvendo um pouco mais, temos: 

|𝑥 − 2| = {
𝒙 − 𝟐;   𝒙 ≥ 𝟐       
𝟐 − 𝒙;   𝒙 < 𝟐      

 

Portanto, para 𝒙 ≤ 𝟐, temos que |𝒙 − 𝟐| = 𝟐 − 𝒙. Observe quando ocorre a igualdade 𝑥 = 2, tanto faz 
escrever 𝑥 − 2 ou 2 − 𝑥, pois nesse caso temos 𝑥 − 2 = 2 − 𝑥 = 0. 

Agora, como podemos descrever |3 − 𝑥|? 
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• Se 3 − 𝑥 é positivo ou zero, mantenha o que está dentro das barras; ou 
• Se 3 − 𝑥 é negativo, insira um sinal de menos. 

De um modo mais formal, podemos dizer: 

|3 − 𝑥| = {
𝟑 − 𝒙;         𝟑 − 𝒙 ≥ 𝟎         
−(𝟑 − 𝒙);  𝟑 − 𝒙 < 𝟎         

 

Desenvolvendo um pouco mais, temos: 

|3 − 𝑥| = {
𝟑 − 𝒙;   𝟑 ≥ 𝒙       
𝒙 − 𝟑;   𝟑 < 𝒙      

 

De modo mais organizado, temos: 

|3 − 𝑥| = {
𝟑 − 𝒙;   𝒙 ≤ 𝟑       
𝒙 − 𝟑;   𝒙 > 𝟑      

 

Portanto, para 𝒙 ≤ 𝟐, temos que |𝟑 − 𝒙| = 𝟑 − 𝒙.  

Voltando ao problema, queremos saber o valor de |𝒙 − 𝟐| + |𝟑 − 𝒙| para 𝒙 ≤ 𝟐. 

|𝑥 − 2| + |3 − 𝑥| 

= 𝟐 − 𝒙 + 𝟑 − 𝒙 

= −2𝑥 + 5 

Gabarito: Letra E. 

 

(CSC IFPA/IF PA/2019) Usando a definição de função modular, podemos concluir com relação à função 

𝒇: [𝟎; 𝟐] → ℝ , dada por 𝒇(𝒙) = |𝒙𝟐  −  𝟐𝒙|  + |𝒙 − 𝟏| que: 

a) 𝑥2 + 𝑥 + 1 se 0 ≤ 𝑥 ≤ 1 

b) −𝑥2 − 𝑥 +  1 se 0 ≤ 𝑥 ≤ 1 

c) −𝑥2 −  𝑥 + 1 se 1 ≤ 𝑥 ≤ 2 

d) −𝑥2  +  3𝑥 +  1 se 1 ≤  𝑥 ≤  2 

e)  −𝑥2  +  3𝑥 +  1 se 1 ≤  𝑥 ≤  2 

Comentários: 

Note que as respostas apresentam a soma requerida para dois intervalos distintos: 𝟎 ≤ 𝒙 ≤ 𝟏 e 𝟏 ≤ 𝒙 ≤ 𝟐. 
Logo, devemos saber, para os dois intervalos: 

• Se |𝑥2 − 2𝑥| corresponde a 𝒙𝟐 − 𝟐𝒙 ou a −(𝑥2 − 2𝑥); e 

• Se |𝑥 − 1| corresponde a 𝒙 − 𝟏 ou a −(𝑥 − 1). 
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Como podemos descrever |𝑥2 − 2𝑥|? 

• Se 𝑥2 − 2𝑥 é positivo ou zero, mantenha o que está dentro das barras; ou 
• Se 𝑥2 − 2𝑥 é negativo, insira um sinal de menos. 

Agora temos um problema: devemos determinar quando 𝑥2 − 2𝑥 é positivo ou zero e quando                              
𝑥2 − 2𝑥 é negativo. Para tanto, é necessário encontrar as raízes da função quadrática. 

Para encontrar as raízes, poderíamos usar fórmula de Bhaskara. Ocorre que uma forma mais 
rápida para esse caso é colocar o 𝑥 em evidência: 

 𝑥2 − 2𝑥 = 0 

 𝑥(𝑥 − 2) = 0 

Note que, para o produto ser igual a zero, um dos dois fatores deve ser zero. Portanto, as raízes 
são: 

 𝒙 = 𝟎 

 𝑥 − 2 = 0 → 𝒙 = 𝟐 

Agora que temos as raízes, podemos descrever a parábola. Como o coeficiente 𝒂 é positivo, a concavidade 
da parábola é para cima. 

 

Pronto! Agora sabemos que: 

• 𝑥2 − 2𝑥 é positivo ou zero e quando 𝒙 ≥ 𝟐 ou 𝒙 ≤ 𝟎; 
• 𝑥2 − 2𝑥 é negativo quando 𝟎 < 𝒙 < 𝟐. 

Observe quando ocorre a igualdade 𝑥 = 0 ou 𝑥 = 2, tanto faz escrever 𝑥2 − 2𝑥 ou −(𝑥2 − 2𝑥), pois nesses 
casos temos 𝑥2 − 2𝑥 = −(𝑥2 − 2𝑥) = 0. 

Logo, tanto para 𝟎 ≤ 𝒙 ≤ 𝟏 quanto para 𝟏 ≤ 𝒙 ≤ 𝟐, temos que: 

|𝑥2 − 2𝑥| = −(𝑥2 − 2𝑥) 
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Agora, como podemos descrever |𝑥 − 1|? 

• Se 𝑥 − 1 é positivo ou zero, mantenha o que está dentro das barras; ou 
• Se 𝑥 − 1 é negativo, insira um sinal de menos. 

De um modo mais formal, podemos dizer: 

|𝑥 − 1| = {
𝒙 − 𝟏;         𝒙 − 𝟏 ≥ 𝟎         
−(𝒙 − 𝟏);  𝒙 − 𝟏 < 𝟎         

 

Desenvolvendo um pouco mais, temos: 

|𝑥 − 1| = {
𝒙 − 𝟏;   𝒙 ≥ 𝟏       
𝟏 − 𝒙;   𝒙 < 𝟏      

 

Logo, para 𝟎 ≤ 𝒙 ≤ 𝟏, temos: 

|𝑥 − 1| = 𝟏 − 𝒙 

Já para 𝟏 ≤ 𝒙 ≤ 𝟐, temos: 

|𝑥 − 1| = 𝒙 − 𝟏 

Voltando ao problema, vamos calcular |𝒙𝟐  −  𝟐𝒙|  + |𝒙 − 𝟏| para 𝟎 ≤ 𝒙 ≤ 𝟏 e para 𝟏 ≤ 𝒙 ≤ 𝟐. 

Caso 1: 𝟎 ≤ 𝒙 ≤ 𝟏 

| 𝑥2  −  2𝑥⏟      
𝐍𝐞𝐠𝐚𝐭𝐢𝐯𝐨

|  + | 𝑥 − 1⏟  
𝐍𝐞𝐠𝐚𝐭𝐢𝐯𝐨

| 

= −(𝑥2 − 2𝑥) + (𝟏 − 𝒙) 

= −𝑥2 + 2𝑥 + 1 − 𝑥 

= −𝑥2 + 𝑥 + 1 

Caso 2: 𝟏 ≤ 𝒙 ≤ 𝟐 

| 𝑥2  −  2𝑥⏟      
𝐍𝐞𝐠𝐚𝐭𝐢𝐯𝐨

|  + | 𝑥 − 1⏟  
𝐏𝐨𝐬𝐢𝐭𝐢𝐯𝐨

| 

= −(𝑥2 − 2𝑥) + (𝒙 − 𝟏) 

= −𝑥2 + 2𝑥 + 𝑥 − 1 

= −𝑥2 + 3𝑥 − 1 

Note, portanto, que a função em questão é dada por −𝒙𝟐 + 𝟑𝒙 +  𝟏 se 𝟏 ≤ 𝒙 ≤ 𝟐. 

Gabarito: Letra E. 
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(CESGRANRIO/TRANSPETRO/2011) Sendo  𝒚 =
|𝒂|

𝒂
+
|𝒃|

𝒃
+
|𝒄|

𝒄
+
|𝒅|

𝒅
, onde a, b, c e d são números reais 

diferentes de zero, qual o número de valores possíveis para y? 

a) 1 

b) 2 

c) 3 

d) 4 

e) 5 

Comentários: 

Considere um número 𝑥, diferente de zero, pertencente ao conjunto dos números reais. 

Note que 
|𝑥|

𝑥
 pode assumir somente dois valores: 

• 1, se 𝑥 for maior do que zero; ou 

• −𝟏, se 𝑥 for menor do que zero. 

Por exemplo, se 𝑥 = 5, temos: 

|𝑥|

𝑥
=
|5|

5
=
5

5
= 1 

Por outro lado, se 𝑥 = −5, temos: 

|𝑥|

𝑥
=
| − 5|

−5
=
5

−5
= −

5

5
= −1 

Isso significa que: 

|𝑥|

𝑥
= {
   𝟏;    𝒙 > 𝟎 
−𝟏;   𝒙 < 𝟎

 

Note, portanto, que as frações 
|𝒂|

𝒂
, 
|𝒃|

𝒃
, 
|𝒄|

𝒄
 e 
|𝒅|

𝒅
 podem assumir, cada uma delas, os valores 1 ou −1. 

• Se 𝑎, 𝑏, 𝑐, e 𝑑 forem todos positivos, o valor de 𝑦 é: 

 
𝑦 = 𝟏 + 𝟏 + 𝟏 + 𝟏 = 4 

 

• Se somente um dos números for negativo, temos: 
 

𝑦 = 𝟏 + 𝟏 + 𝟏 − 𝟏 = 2 
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• Se somente dois números forem negativos, temos: 
 

𝑦 = 𝟏 + 𝟏 − 𝟏 − 𝟏 = 0 
 

• Se somente três números forem negativos, temos: 

𝑦 = 𝟏 − 𝟏 − 𝟏 − 𝟏 = −2 

• Se todos os números 𝑎, 𝑏, 𝑐 e 𝑑 forem negativos, temos: 
 

𝑦 = −𝟏 − 𝟏 − 𝟏 − 𝟏 = −4 

 

Note, portanto, que 𝒚 pode assumir 5 valores distintos: 4, 2, 0, −2 e −4. 

Gabarito: Letra E. 

 

(INAZ do Pará/CRO RJ/2016) O valor da expressão √(𝒙 − 𝟑)𝟐, para 𝟎 ≤ 𝒙 < 𝟑 será: 

a) x−3 

b) 3−x 

c) x 

d) 3 

e) x−1 

Comentários: 

Sabemos que a raiz do quadrado de um número é igual ao módulo do número. Para o caso em questão, 
temos: 

√(𝑥 − 3)2 = |𝑥 − 3| 

Pela definição de módulo, temos que: 

• Se 𝑥 − 3 é positivo ou zero, mantenha o que está dentro das barras; ou 
• Se 𝑥 − 3 é negativo, insira um sinal de menos. 

De um modo mais formal, podemos dizer: 

|𝑥 − 3| = {
𝒙 − 𝟑;         𝒙 − 𝟑 ≥ 𝟎         
−(𝒙 − 𝟑);  𝒙 − 𝟑 < 𝟎         

 

Desenvolvendo um pouco mais, temos: 
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|𝑥 − 3| = {
𝒙 − 𝟑;   𝒙 ≥ 𝟑       
𝟑 − 𝒙;   𝒙 < 𝟑      

 

Note que a questão restringe o valor de 𝑥 para o seguinte intervalo: 𝟎 ≤ 𝒙 < 𝟑. Nesse intervalo, 𝒙 é menor 
do que 3 e, portanto: 

√(𝒙 − 𝟑)𝟐 = |𝑥 − 3| = 𝟑 − 𝒙 

Gabarito: Letra B. 

 

 (ESAF/Pref. RJ/2010)  Considere 𝒂 e 𝒃 números reais. A única opção falsa é: 

a) |𝑎 + 𝑏| ≤ |𝑎| + |𝑏| 

b) |𝑎| + |𝑏| ≥ |𝑎 − 𝑏| 

c) |𝑎 − 𝑏| < |𝑎| − |𝑏| 

d) |𝑏 − 𝑎| ≥ |𝑏| − |𝑎| 

e) |𝑏 + 𝑎| ≤ |𝑎| + |𝑏| 

Comentários: 

 

Pessoal, sabemos que a banca ESAF não mais realiza concursos públicos. Apesar disso, incluí essa questão 
no material pelo fato de ser a única questão que cobra diretamente as propriedades do módulo. 

Primeiramente, vamos resolver a questão de uma forma mais prática, atribuindo valores. Na sequência, a 
questão será resolvida de um modo mais formal, para que possamos exercitar as propriedades aprendidas. 

Resolução atribuindo valores 

Na hora da prova, uma possível estratégia para resolver o problema seria atribuir valores para 𝑎 e para 𝑏 de 
modo que um número é positivo e o outro é negativo. Fazendo 𝑎 = 2 e 𝑏 = −1, vamos analisar cada 
alternativa. 

a) |𝒂 + 𝒃| ≤ |𝒂| + |𝒃| 

|2 + (−1)| ≤ |2| + | − 1| 

|1| ≤ 2 + 1 

1 ≤ 3 

Nenhuma contradição foi encontrada com 𝑎 = 2 e 𝑏 = −1, de modo que não se pode descartar essa 
alternativa. 
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b) |𝒂| + |𝒃| ≥ |𝒂 − 𝒃| 

|2| + |−1| ≥ |2 − (−1)| 

2 + 1 ≥ |3| 

3 ≥ 3 

Nenhuma contradição foi encontrada com 𝑎 = 2 e 𝑏 = −1, de modo que não se pode descartar essa 
alternativa. 

 

c) |𝒂 − 𝒃| < |𝒂| − |𝒃| 

|2 − (−1)| < |2| − | − 1| 

|3| < 2 − 1 

3 < 1 

Encontramos uma contradição, pois é errado afirmar que 3 é menor do que 1. Logo, a afirmação é falsa. O 
gabarito, portanto, é letra C. 

d) |𝒃 − 𝒂| ≥ |𝒃| − |𝒂| 

|(−1) − 2| ≥ |−1| − |2| 

|−3| ≥ 1 − 2 

3 ≥ −1 

Nenhuma contradição foi encontrada com 𝑎 = 2 e 𝑏 = −1, de modo que não se pode descartar essa 
alternativa. 

e) |𝒃 + 𝒂| ≤ |𝒂| + |𝒃| 

|(−1) + 2| ≤ |2| + | − 1| 

|1| ≤ 2 + 1 

1 ≤ 3 

Nenhuma contradição foi encontrada com 𝑎 = 2 e 𝑏 = −1, de modo que não se pode descartar essa 
alternativa. 

Resolução formal 

Nesse momento, vamos resolver a questão de um modo mais formal, exercitando as propriedades 
aprendidas. 

a) |𝒂 + 𝒃| ≤ |𝒂| + |𝒃|. Verdadeiro. 

Vimos na teoria que o módulo da soma é menor ou igual à soma dos módulos.  

Como |𝒙 + 𝒚| ≤ |𝒙| + |𝒚|, temos que |𝒂 + 𝒃| ≤ |𝒂| + |𝒃|. 
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b) |𝒂| + |𝒃| ≥ |𝒂 − 𝒃|. Verdadeiro. 

Sabemos que |𝒙 + 𝒚| ≤ |𝒙| + |𝒚|. Escrevendo de uma outra forma, podemos dizer: 

|𝒙| + |𝒚| ≥ |𝒙 + 𝒚| 

Fazendo 𝑥 = 𝑎 e 𝑦 = −𝑏, temos: 

|𝒂| + |−𝒃| ≥ |𝒂 − 𝒃| 

Como |−𝒃| = |𝒃|, temos: 

|𝒂| + |𝒃| ≥ |𝒂 − 𝒃| 

c) |𝒂 − 𝒃| < |𝒂| − |𝒃|. Falso. Este é o gabarito. 

Vimos na teoria que o módulo da diferença é maior ou igual à diferença dos módulos.  

Como |𝒙 − 𝒚| ≥ |𝒙| − |𝒚|, temos que |𝒂 − 𝒃| ≥ |𝒂| − |𝒃|.  

A alternativa erra ao trocar o sentido da desigualdade e também ao não considerar a possibilidade de que 
as expressões sejam iguais. O gabarito, portanto, é letra C. 

d) |𝒃 − 𝒂| ≥ |𝒃| − |𝒂|. Verdadeiro. 

Vimos na teoria que o módulo da diferença é maior ou igual à diferença dos módulos.  

Como |𝒙 − 𝒚| ≥ |𝒙| − |𝒚|, temos que |𝒃 − 𝒂| ≥ |𝒃| − |𝒂|. 

e) |𝒃 + 𝒂| ≤ |𝒂| + |𝒃|. Verdadeiro. 

Vimos na teoria que o módulo da soma é menor ou igual à soma dos módulos. Logo: 

|𝒃 + 𝒂| ≤ |𝒃| + |𝒂| 

A soma |𝒃| + |𝒂| é igual a |𝒂| + |𝒃|. Logo, ficamos com: 

|𝒃 + 𝒂| ≤ |𝒂| + |𝒃| 

Gabarito: Letra C. 
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QUESTÕES COMENTADAS - MULTIBANCAS 

Equações modulares 

Outras Bancas  

(IAUPE/Pref. Caetés/2018) No campo dos números reais, o conjunto verdade da equação                                   

|𝟑𝒙 − 𝟏| = 𝟒 é: 

a) 𝑉 = {1} 

b) 𝑉 = {−1} 

c) 𝑉 = {−
5

3
} 

d) 𝑉 = {
5

3
} 

e) 𝑉 = {−1,
5

3
 } 

Comentários: 

Temos uma equação modular em que o módulo de 𝒇(𝒙) é igual a uma constante. Nesse caso, devemos 
proceder do seguinte modo: 

|𝑓(𝑥)| = 𝑘       {
𝑓(𝑥) = 𝑘
ou

𝑓(𝑥) = −𝑘
 

Logo: 

|3𝑥 − 1| = 4 → {
3𝑥 − 1 = 4   

ou
3𝑥 − 1 = −4

 →  {
3𝑥 = 5   
ou

3𝑥 = −3

 →  {
𝑥 =

5

3
   

ou
𝑥 = −1

 

Portanto, o conjunto verdade (conjunto solução) é: 

𝑉 = {−1;
5

3
} 

Gabarito: Letra E. 
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(Instituto AOCP/IBC/2013) O conjunto solução da equação |𝟐𝒙 + 𝟑| = 𝟕 é 

a) {−2,5} 

b) {2} 

c) {−5} 

d) {−5,2} 

e) ∅ 

Comentários: 

Temos uma equação modular em que o módulo de 𝒇(𝒙) é igual a uma constante. Nesse caso, devemos 
proceder do seguinte modo: 

|𝑓(𝑥)| = 𝑘       {
𝑓(𝑥) = 𝑘
ou

𝑓(𝑥) = −𝑘
 

Logo: 

|2𝑥 + 3| = 7 → {
2𝑥 + 3 = 7   

ou
2𝑥 + 3 = −7

 →  {
2𝑥 = 4   
ou

2𝑥 = −10

 →  {
𝑥 = 2   
ou

𝑥 = −5

 

Portanto, o conjunto solução é: 

𝑆 = {−5; 2} 

Gabarito: Letra D. 

 

(CONSEP/Pref. Ribamar Fiquene/2011) Resolva em ℝ a equação |
𝒙−𝟏

𝟐
+
𝟏

𝟒
| = 𝟏 e assinale a alternativa 

correta. 

a) x = 2/3 ou x = 0 

b) x = 5/2 ou x = −3/2 

c) x = - 2 ou x = 3 

d) x = 0 ou x = −1 

Comentários: 

Temos uma equação modular em que o módulo de 𝒇(𝒙) é igual a uma constante. Nesse caso, devemos 
proceder do seguinte modo: 

|𝑓(𝑥)| = 𝑘       {
𝑓(𝑥) = 𝑘
ou

𝑓(𝑥) = −𝑘
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Logo: 

|
𝑥 − 1

2
+
1

4
| = 1 →

{
 
 

 
 
𝑥 − 1

2
+
1

4
= 1   

ou
𝑥 − 1

2
+
1

4
= −1

 →  

{
 
 

 
 
𝑥 − 1

2
= 1 −

1

4
    

ou
𝑥 − 1

2
= −1 −

1

4

 →  

{
 
 

 
 
𝑥 − 1

2
=
3

4
    

ou
𝑥 − 1

2
= −

5

4

 

→ 

{
 
 

 
 𝑥 − 1 =

3

2
    

ou

𝑥 − 1 = −
5

2

→  

{
 
 

 
 𝑥 =

3

2
+ 1    

ou

𝑥 = −
5

2
+ 1

→ 

{
 
 

 
 𝑥 =

5

2
    

ou

𝑥 = −
3

2

 

Logo, temos que x = 5/2 ou x = −3/2. 

Gabarito: Letra B. 

 

(DIRENS/EEAR/2018) Seja 𝒇(𝒙) = | 𝟑𝒙 –  𝟒 | uma função. Sendo 𝒂 ≠ 𝒃 e 𝒇(𝒂) = 𝒇(𝒃) = 𝟔, então o valor 

de a + b é igual a 

a) 5/3 

b) 8/3 

c) 5 

d) 3 

Comentários: 

Note que 𝑎 𝑒 𝑏 são dois valores possíveis de 𝑥 distintos que fazem com que 𝑓(𝑥) seja igual a 6.  

Vamos encontrar 𝑎 e 𝑏 encontrando os valores que satisfazem a equação 𝑓(𝑥) = 6. 

|3𝑥 − 4| = 6 → {
3𝑥 − 4 = 6   

ou
3𝑥 − 4 = −6

→ {
3𝑥 = 10
ou

3𝑥 = −2
→

{
 
 

 
 𝑥 =

10

3
ou

𝑥 = −
2

3

 

Logo, o valor de 𝑎 + 𝑏 é: 

10

3
+ (−

2

3
) =

8

3
 

Gabarito: Letra B. 
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(CEV URCA/Pref. Brejo Santo/2019) A soma das raízes distintas da equação modular |𝒙𝟐 − 𝟐𝒙| = 𝟏 é 

a) 3 

b) 2 

c) 2 + √2 

d) 4 

e) 3 − √2 

Comentários: 

Temos uma equação modular em que o módulo de 𝒇(𝒙) é igual a uma constante. Nesse caso, devemos 
proceder do seguinte modo: 

|𝑓(𝑥)| = 𝑘       {
𝑓(𝑥) = 𝑘
ou

𝑓(𝑥) = −𝑘
 

Logo: 

|𝑥2 − 2𝑥| = 1 → {
𝑥2 − 2𝑥 = 1    

ou
𝑥2 − 2𝑥 = −1

→ {
𝑥2 − 2𝑥 − 1 = 0

ou
𝑥2 − 2𝑥 + 1 = 0

 

Devemos encontrar as raízes das duas equações do segundo grau obtidas. 

Primeira equação: 𝒙𝟐 − 𝟐𝒙 − 𝟏 = 𝟎 

Para encontrar as raízes, vamos utilizar a fórmula de Bhaskara. Temos: 

 𝑎 = 1 

 𝑏 = −2 

 𝑐 = −1 

O discriminante é dado por: 

 ∆ = 𝑏2 − 4𝑎𝑐 

 = (−2)2 − 4.1. (−1) 

 = 4 − (−4) 

 = 8 
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As raízes são: 

 𝑥 =
−𝑏±√∆

2𝑎
 

 𝑥 =
−(−2)±√8

2.1
 

 𝑥 =
2±√4×2

2
 

 𝑥 =
2±2√2

2
 

 𝑥 = 1 ± √2 

 𝑥1 = 1 + √2  ;  𝑥2 = 1 − √2 

Segunda equação: 𝒙𝟐 − 𝟐𝒙 + 𝟏 = 𝟎 

Para encontrar as raízes, poderíamos utilizar a fórmula de Bhaskara. Note, porém, que 

𝑥2 − 2𝑥 + 1 = (𝑥 − 1)2  

Logo, a equação  𝒙𝟐 − 𝟐𝒙 + 𝟏 = 𝟎 corresponde a: 

 (𝑥 − 1)2 = 0 

Essa equação apresenta duas raízes iguais: 𝑥1 = 𝑥2 = 1. 

Voltando ao problema original, temos: 

{
𝑥2 − 2𝑥 − 1 = 0    

ou
𝑥2 − 2𝑥 + 1 = 0

→ {
𝑥 = 1 + √2  ou 𝑥 = 1 − √2

ou
𝑥 = 1

 

Portanto, a soma das raízes distintas da equação modular em questão é: 

(1 + √2) + (1 − √2) + 1 

= 3 

Gabarito: Letra A. 
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(DIRENS/EEAR/2018) Dada a equação |𝒙𝟐–𝟐𝒙– 𝟒| = 𝟒, a soma dos elementos do conjunto solução é 

a) 4 

b) 6 

c) 8 

d) 10 

Comentários: 

Temos uma equação modular em que o módulo de 𝒇(𝒙) é igual a uma constante. Nesse caso, devemos 
proceder do seguinte modo: 

|𝑓(𝑥)| = 𝑘       {
𝑓(𝑥) = 𝑘
ou

𝑓(𝑥) = −𝑘
 

Logo: 

|𝑥2 − 2𝑥 − 4| = 4 → {
𝑥2 − 2𝑥 − 4 = 4    

ou
𝑥2 − 2𝑥 − 4 = −4

→ {
𝑥2 − 2𝑥 − 8 = 0    

ou
𝑥2 − 2𝑥 = 0           

 

Devemos encontrar as raízes das duas equações do segundo grau obtidas. 

Primeira equação: 𝒙𝟐 − 𝟐𝒙 − 𝟖 = 𝟎 

Para encontrar as raízes, vamos utilizar a fórmula de Bhaskara. Temos: 

 𝑎 = 1 

 𝑏 = −2 

 𝑐 = −8 

O discriminante é dado por: 

 ∆ = 𝑏2 − 4𝑎𝑐 

 = (−2)2 − 4.1. (−8) 

 = 4 − (−32) 

 = 36 

As raízes são: 

 𝑥 =
−𝑏±√∆

2𝑎
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 𝑥 =
−(−2)±√36

2.1
 

 𝑥 =
2±6

2
 

 𝑥 = 1 ± 3 

 𝑥1 = 4  ;  𝑥2 = −2 

Segunda equação: 𝒙𝟐 − 𝟐𝒙 = 𝟎 

Para encontrar as raízes, poderíamos usar fórmula de Bhaskara. Ocorre que uma forma mais 
rápida para esse caso é colocar o 𝑥 em evidência: 

 𝑥2 − 2𝑥 = 0 

 𝑥(𝑥 − 2) = 0 

Note que, para o produto ser igual a zero, um dos dois fatores deve ser zero. Portanto, as raízes 
são: 

 𝒙 = 𝟎 

 𝑥 − 2 = 0 → 𝒙 = 𝟐 

Voltando ao problema original, temos: 

{
𝑥2 − 2𝑥 − 8 = 0    

ou
𝑥2 − 2𝑥 = 0           

→ {
𝑥 = −2  ou 𝑥 = 4

ou
𝑥 = 0 ou 𝑥 = 2

 

O conjunto solução é dado por: 

𝑆 = {−2; 0; 2; 4} 

Portanto, a soma dos elementos do conjunto solução é: 

−2 + 0 + 2 + 4 

= 4 

Gabarito: Letra A. 

 

(FUNDATEC/ESE/2019) Analise a seguinte equação modular: 

|𝟒𝒙 − 𝟑| = 𝒙 

A soma de suas soluções é: 
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a) 1. 

b) 0. 

c) 3/5. 

d) –3/5. 

e) 8/5. 

Comentários: 

Temos uma equação modular em que o módulo de 𝒇(𝒙) é igual a 𝒈(𝒙). Nesse caso, devemos proceder do 
seguinte modo: 

|𝑓(𝑥)| = 𝑔(𝑥)      

{
 
 

 
 
𝑓(𝑥) = 𝑔(𝑥)

ou
𝑓(𝑥) = −𝑔(𝑥)

𝐞
𝒈(𝒙) ≥ 𝟎

 

Logo: 

|4𝑥 − 3| = 𝑥 →   

{
 
 

 
 
4𝑥 − 3 = 𝑥       

ou
4𝑥 − 3 = −(𝑥)

𝐞
𝒙 ≥ 𝟎

 →  

{
 
 

 
 4𝑥 − 𝑥 = 3

ou
4𝑥 + 𝑥 = 3

𝐞
𝒙 ≥ 𝟎

→ 

{
 
 

 
 3𝑥 = 3 

ou
5𝑥 = 3
𝐞

𝒙 ≥ 𝟎

→ 

{
 
 

 
 
𝑥 = 1 
ou

𝑥 =
3

5
𝐞

𝒙 ≥ 𝟎

 

Note que as duas soluções obtidas são válidas, pois satisfazem a condição 𝒙 ≥ 𝟎. Portanto, o conjunto 
solução é: 

𝑆 = {
3

5
; 1} 

Logo, a soma das soluções é: 

3

5
+ 1 =

3 + 5

5
=
8

5
 

Gabarito: Letra E. 

 

(MS CONCURSOS/SEAD Passo Fundo/2016) Assinale a alternativa que contém a solução da equação 

|𝒙| = 𝟒 + 𝒙: 

a) 𝑆 = {𝑥 ∈ ℝ /−5 < 𝑥 < −1} 

b) 𝑆 = {𝑥 ∈  ℝ / 1 < 𝑥 <  5} 

c) 𝑆 = {𝑥 ∈  ℝ /−1 < 𝑥 < 5} 
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d) 𝑆 = {𝑥 ∈ ℝ/−5 < 𝑥 < −3} 

Comentários: 

Temos uma equação modular em que o módulo de 𝒇(𝒙) é igual a 𝒈(𝒙). Nesse caso, devemos proceder do 
seguinte modo: 

|𝑓(𝑥)| = 𝑔(𝑥)      

{
 
 

 
 
𝑓(𝑥) = 𝑔(𝑥)

ou
𝑓(𝑥) = −𝑔(𝑥)

𝐞
𝒈(𝒙) ≥ 𝟎

 

Logo: 

|𝑥| = 4 + 𝑥 →   

{
 
 

 
 
𝑥 = 4 + 𝑥       

ou
𝑥 = −(4 + 𝑥)

𝐞
𝟒 + 𝒙 ≥ 𝟎

 →  

{
 
 

 
 0 = 4

ou
𝑥 = −4 − 𝑥

𝐞
𝒙 ≥ −𝟒

→ 

{
 
 

 
 0 = 4 

ou
2𝑥 = −4

𝐞
𝒙 ≥ −𝟒

→ 

{
 
 

 
 0 = 4 

ou
𝑥 = −2
𝐞

𝒙 ≥ −𝟒

 

A equação 𝟎 = 𝟒 nos traz algo impossível, em que não há uma solução para 𝑥. Por outro lado, 𝒙 = −𝟐 é 
uma solução possível, pois ela respeita a condição 𝒙 ≥ −𝟒. 

Dentre as opções elencadas nas alternativas, a única que apresenta um intervalo que contém a solução para 
a equação é a letra A. 

Gabarito: Letra A. 

 

(FAUEL/IF PR/2015) O conjunto solução da equação |𝒙| = 𝒙 –  𝟓 é igual a: 

a) 𝑆 =  ∅. 

b) 𝑆 =  {0}. 

c) 𝑆 =  {5}. 

d) 𝑆 =  {0, 1}. 

e) 𝑆 =  {0, 5}. 

Comentários: 

Temos uma equação modular em que o módulo de 𝒇(𝒙) é igual a 𝒈(𝒙). Nesse caso, devemos proceder do 
seguinte modo: 
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|𝑓(𝑥)| = 𝑔(𝑥)      

{
 
 

 
 
𝑓(𝑥) = 𝑔(𝑥)

ou
𝑓(𝑥) = −𝑔(𝑥)

𝐞
𝒈(𝒙) ≥ 𝟎

 

Logo: 

|𝑥| = 𝑥 − 5 →   

{
 
 

 
 
𝑥 = 𝑥 − 5       

ou
𝑥 = −(𝑥 − 5)

𝐞
𝒙 − 𝟓 ≥ 𝟎

 →  

{
 
 

 
 0 = −5

ou
𝑥 = −𝑥 + 5

𝐞
𝒙 ≥ 𝟓

→ 

{
 
 

 
 0 = −5 

ou
2𝑥 = 5
𝐞

𝒙 ≥ 𝟓

→ 

{
 
 

 
 
0 = −5 
ou

𝑥 =
5

2
𝐞

𝒙 ≥ 𝟓

 

A equação 𝟎 = −𝟓 nos traz algo impossível, em que não há uma solução para 𝑥. Além disso, 𝒙 =
𝟓

𝟐
 também 

não é viável, pois ela não respeita a condição 𝒙 ≥ 𝟓. Portanto, o conjunto solução é vazio: 

𝑆 = ∅ 

Gabarito: Letra A. 

 

(COPESE-UFT/Pref. Gurupi/2014) Encontre o conjunto solução para a seguinte equação modular:                      

|𝒙|𝟐 + 𝟐|𝒙| – 𝟏𝟓 =  𝟎. 

a) { 3, –  3} 

b) { 3, – 5} 

c) {– 5, – 3, 3} 

d) {–  5, –  3, 3, 5} 

Comentários: 

Devemos encontrar o conjunto solução da equação |𝑥|2 + 2|𝑥| – 15 =  0. 

Ao realizar a substituição 𝑦 = |𝑥|, ficamos com: 

𝑦2 + 2𝑦 − 15 = 0 

Para encontrar as raízes, vamos utilizar a fórmula de Bhaskara. Temos: 

 𝑎 = 1 

 𝑏 = 2 

 𝑐 = −15 
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O discriminante é dado por: 

 ∆ = 𝑏2 − 4𝑎𝑐 

 = (2)2 − 4.1. (−15) 

 = 4 − (−60) 

 = 64 

As raízes são: 

 𝑦 =
−𝑏±√∆

2𝑎
 

 𝑦 =
−2±√64

2.1
 

 𝑦 =
−2±8

2
 

 𝑦 = −1 ± 4 

 𝒚𝟏 = 𝟑  ;  𝒚𝟐 = −𝟓 

Voltando ao problema, temos que 𝑦 = |𝑥|. Logo: 

• |𝑥| = 𝟑 → 𝒙 = 𝟑  ou 𝒙 = −𝟑. 

• |𝑥| = −𝟓 → Não há 𝒙 que satisfaça essa igualdade, pois |𝒙| ≥ 𝟎. 

Portanto, o conjunto solução da equação |𝑥|2 + 2|𝑥| – 15 = 0 é: 

𝑆 = {−3; 3} 

Esse conjunto solução está representado na letra A. 

Gabarito: Letra A. 

 

(FUNDEP/Pref. Ibirité/2016) O número de soluções reais da equação |𝟐𝒙 –  𝟑|  + 𝟐 = |𝒙 + 𝟒| é: 

a) 0. 

b) 1. 

c) 2. 

d) 3. 

Comentários: 
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Devemos utilizar a definição de módulo para resolver esse problema. 

Vamos verificar o sinal de 𝟐𝒙 − 𝟑: 

𝟐𝒙 − 𝟑 ≥ 𝟎 →  2𝑥 ≥ 3 →  𝒙 ≥
𝟑

𝟐
 

𝟐𝒙 − 𝟑 < 𝟎 → 2𝑥 < 3  →   𝒙 <
𝟑

𝟐
 

Agora vamos verificar o sinal de 𝒙 + 𝟒: 

𝒙 + 𝟒 ≥ 𝟎 → 𝒙 ≥ −𝟒 

𝒙 + 𝟒 < 𝟎 → 𝒙 < −𝟒 

Logo, devemos analisar a equação |𝟐𝒙 –  𝟑|  + 𝟐 = |𝒙 + 𝟒| para três casos: 

• 𝒙 < −𝟒 
 

• −𝟒 ≤ 𝒙 <
𝟑

𝟐
; e 

 

• 𝒙 ≥
𝟑

𝟐
. 

Podemos inserir esses casos em uma tabela: 

 

Caso 1: 𝒙 < −𝟒 

| 𝟐𝒙 − 𝟑⏟    |
𝐍𝐞𝐠𝐚𝐭𝐢𝐯𝐨

+ 𝟐 = | 𝒙 + 𝟒⏟  |
𝐍𝐞𝐠𝐚𝐭𝐢𝐯𝐨

  

−(2𝑥 − 3) + 2 = −(𝑥 + 4) 

−2𝑥 + 3 + 2 = −𝑥 − 4 

−2𝑥 + 𝑥 = −4 − 3 − 2 

−𝑥 = −9 

𝑥 = 9 

Note que essa solução para 𝑥 não é válida, pois ela não é menor do que −4. 

Caso 2: −𝟒 ≤ 𝒙 <
𝟑

𝟐
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| 𝟐𝒙 − 𝟑⏟    |
𝐍𝐞𝐠𝐚𝐭𝐢𝐯𝐨

+ 𝟐 = | 𝒙 + 𝟒⏟  |
𝐏𝐨𝐬𝐢𝐭𝐢𝐯𝐨

  

−(2𝑥 − 3) + 2 = 𝑥 + 4 

−2𝑥 + 3 + 2 = 𝑥 + 4 

−3𝑥 = 4 − 3 − 2 

−3𝑥 = −1 

𝑥 =
1

3
 

Note que essa solução para 𝑥 é válida, pois ela está compreendida no intervalo −𝟒 ≤ 𝒙 <
𝟑

𝟐
. 

 

 

Caso 3: 𝒙 ≥
𝟑

𝟐
 

| 𝟐𝒙 − 𝟑⏟    |
𝐏𝐨𝐬𝐢𝐭𝐢𝐯𝐨

+ 𝟐 = | 𝒙 + 𝟒⏟  |
𝐏𝐨𝐬𝐢𝐭𝐢𝐯𝐨

  

2𝑥 − 3 + 2 = 𝑥 + 4 

2𝑥 − 𝑥 = 4 + 3 − 2 

𝑥 = 5 

Note que essa solução para 𝑥 é válida, pois ela é maior do que 
𝟑

𝟐
. 

Portanto, o conjunto solução da equação |𝟐𝒙 –  𝟑|  + 𝟐 = |𝒙 + 𝟒| é: 

𝑆 = {
1

3
;  5} 

Logo, temos duas soluções reais para a equação. 

Gabarito: Letra C. 

 

(FAFIPA/FA/2017) Resolva, no conjunto dos números reais, |𝟐𝒙 −  𝟓| − |𝒙 +  𝟑| = 𝟖.  

a) 𝑆 = {−2} 

b) 𝑆 = {16} 

c) Não admite solução real 

d) 𝑆 = {−2;  16} 

Comentários: 
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Devemos utilizar a definição de módulo para resolver esse problema. 

Vamos verificar o sinal de 𝟐𝒙 − 𝟓: 

𝟐𝒙 − 𝟓 ≥ 𝟎 →  2𝑥 ≥ 5 →  𝒙 ≥
𝟓

𝟐
 

𝟐𝒙 − 𝟓 < 𝟎 → 2𝑥 < 5  →   𝒙 <
𝟓

𝟐
 

Agora vamos verificar o sinal de 𝒙 + 𝟑: 

𝒙 + 𝟑 ≥ 𝟎 → 𝒙 ≥ −𝟑 

𝒙 + 𝟑 < 𝟎 → 𝒙 < −𝟑 

 

Logo, devemos analisar a equação |2𝑥 −  5| − |𝑥 +  3| = 8  para três casos: 

• 𝒙 < −𝟑 
 

• −𝟑 ≤ 𝒙 <
𝟓

𝟐
; e 

 

• 𝒙 ≥
𝟓

𝟐
. 

Podemos inserir esses casos em uma tabela: 

 

Caso 1: 𝒙 < −𝟑 

| 𝟐𝒙 − 𝟓⏟    |
𝐍𝐞𝐠𝐚𝐭𝐢𝐯𝐨

− | 𝒙 + 𝟑⏟  |
𝐍𝐞𝐠𝐚𝐭𝐢𝐯𝐨

= 8   

−(2𝑥 − 5) − −(𝑥 + 3) = 8 

−2𝑥 + 5 + (𝑥 + 3) = 8 

−2𝑥 + 𝑥 = 8 − 5 − 3 

−𝑥 = 0 

𝑥 = 0 

Note que essa solução para 𝑥 não é válida, pois ela não é menor do que −3. 
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Caso 2: −𝟑 ≤ 𝒙 <
𝟓

𝟐
 

| 𝟐𝒙 − 𝟓⏟    |
𝐍𝐞𝐠𝐚𝐭𝐢𝐯𝐨

− |𝒙 + 𝟑⏟  |
𝐏𝐨𝐬𝐢𝐭𝐢𝐯𝐨

= 𝟖   

−(2𝑥 − 5) − (𝑥 + 3) = 8 

−2𝑥 + 5 − 𝑥 − 3 = 8 

−3𝑥 = 8 − 5 + 3 

−3𝑥 = 6 

𝑥 = −2 

Note que essa solução para 𝑥 é válida, pois ela está compreendida no intervalo −𝟑 ≤ 𝒙 <
𝟓

𝟐
. 

 

 

Caso 3: 𝒙 ≥
𝟓

𝟐
 

| 𝟐𝒙 − 𝟓⏟    |
𝐏𝐨𝐬𝐢𝐭𝐢𝐯𝐨

− |𝒙 + 𝟑⏟  |
𝐏𝐨𝐬𝐢𝐭𝐢𝐯𝐨

= 𝟖   

(2𝑥 − 5) − (𝑥 + 3) = 8 

2𝑥 − 5 − 𝑥 − 3 = 8 

2𝑥 − 𝑥 = 8 + 5 + 3 

𝑥 = 16 

Note que essa solução para 𝑥 é válida, pois ela é maior do que 
𝟓

𝟐
. 

Portanto, o conjunto solução da equação  |2𝑥 −  5| − |𝑥 +  3| = 8 é: 

𝑆 = {−2;  16} 

Gabarito: Letra D. 

 

(CEV URCA/URCA/2019) O conjunto solução da equação |𝒙 − 𝟐| + |𝒙 − 𝟑| = 𝟏 é: 

a) {2} 

b) {3} 

c) {2,3} 

d) [2,3] 

e) [0,3] 
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Comentários: 

Devemos utilizar a definição de módulo para resolver esse problema. 

Vamos verificar o sinal de 𝒙 − 𝟐: 

𝒙 − 𝟐 ≥ 𝟎 →  𝒙 ≥ 𝟐 

𝒙 − 𝟐 < 𝟎 →  𝒙 < 𝟐 

Agora vamos verificar o sinal de 𝒙 − 𝟑: 

𝒙 − 𝟑 ≥ 𝟎 → 𝒙 ≥ 𝟑 

𝒙 − 𝟑 < 𝟎 → 𝒙 < 𝟑 

 

Logo, devemos analisar a equação |𝒙 − 𝟐| + |𝒙 − 𝟑| = 𝟏 para três casos: 

• 𝒙 < 𝟐; 
 

• 𝟐 ≤ 𝒙 < 𝟑; e 
 

• 𝒙 ≥ 𝟑. 

Podemos inserir esses casos em uma tabela: 

 

Caso 1: 𝒙 < −𝟐 

| 𝒙 − 𝟐⏟  |
𝐍𝐞𝐠𝐚𝐭𝐢𝐯𝐨

+ | 𝒙 − 𝟑⏟  |
𝐍𝐞𝐠𝐚𝐭𝐢𝐯𝐨

= 𝟐  

−(𝑥 − 2) − (𝑥 − 3) = 1 

−𝑥 + 2 − 𝑥 + 3 = 1 

−2𝑥 = 1 − 2 − 3 

−2𝑥 = −4 

𝑥 = 2 

Note que essa solução para 𝑥 não é válida, pois ela não está compreendida no intervalo 𝒙 < 𝟐. Apesar 
disso, veremos que essa solução será incluída no próximo caso, em que 2 ≤ 𝑥 < 3. 
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Caso 2: 𝟐 ≤ 𝒙 < 𝟑 

| 𝒙 − 𝟐⏟  |
𝐏𝐨𝐬𝐢𝐭𝐢𝐯𝐨

+ | 𝒙 − 𝟑⏟  |
𝐍𝐞𝐠𝐚𝐭𝐢𝐯𝐨

= 𝟐  

(𝑥 − 2) − (𝒙 − 𝟑) = 1 

𝑥 − 2 − 𝑥 + 3 = 1 

1 = 1 

Observe que, quando 𝟐 ≤ 𝒙 < 𝟑, a equação modular é sempre verdadeira. Portanto, todos os valores de 𝒙 

compreendidos no intervalo 𝟐 ≤ 𝒙 < 𝟑 são possíveis soluções, incluindo o caso 𝒙 = 𝟐. 

Caso 3: 𝒙 ≥ 𝟑 

| 𝒙 − 𝟐⏟  |
𝐏𝐨𝐬𝐢𝐭𝐢𝐯𝐨

+ | 𝒙 − 𝟑⏟  |
𝐏𝐨𝐬𝐢𝐭𝐢𝐯𝐨

= 𝟐  

𝑥 − 2 + 𝑥 − 3 = 1 

2𝑥 = 1 + 2 + 3 

2𝑥 = 6 

𝑥 = 3 

Logo, para 𝒙 ≥ 𝟑, temos a solução 𝒙 = 𝟑. 

Em resumo, obtivemos os seguintes valores para 𝑥 que satisfazem a equação modular: 

• 2 ≤ 𝑥 < 3, e 

• 𝒙 = 𝟑. 

Portanto, o conjunto solução é o intervalo fechado entre 2 e 3, isto é: 

𝑆 = {𝑥 ∈ ℝ/2 ≤ 𝑥 ≤ 3} = [2, 3] 

Gabarito: Letra D. 

 

(DIRENS/EEAR/2016) Seja 𝒇(𝒙) = |𝒙 −  𝟑| uma função. A soma dos valores de x para os quais a função 

assume o valor 2 é 

a) 3 

b) 4 

c) 6 

d) 7 

Comentários: 

A função 𝑓(𝑥) assume o valor 2 quando 𝑓(𝑥) = 2. Portanto: 
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|𝑥 − 3| = 2 

Logo: 

|𝑥 − 3| = 2 → {
𝑥 − 3 = 2   

ou
𝑥 − 3 = −2

→ {
𝑥 = 5 
ou
𝑥 = 1

 

A soma dos valores de 𝒙 para os quais a função assume o valor 2 é: 

5 + 1 = 6 

Gabarito: Letra C. 

 

(CSEP IFPI/IF PI/2019) Os valores de 𝒙 que satisfazem a equação 𝒇(𝒙)  =  𝟎, onde                                            

𝒇(𝒙) = |𝒙|𝟐 − |𝒙| − 𝟔 são números reais. A soma das raízes de 𝒇(𝒙)  =  𝟎 é: 

a) −1. 

b) 0. 

c) 1. 

d) 2. 

e) 3. 

Comentários: 

As raízes de 𝑓(𝑥) = 0 correspondem aos valores de 𝑥 que satisfazem a seguinte equação: 

|𝑥|2 − |𝑥| − 6 = 0 

Ao realizar a substituição 𝑦 = |𝑥|, ficamos com: 

𝑦2 − 𝑦 − 6 = 0 

Para encontrar as raízes, vamos utilizar a fórmula de Bhaskara. Temos: 

 𝑎 = 1 

 𝑏 = −1 

 𝑐 = −6 

O discriminante é dado por: 

 ∆ = 𝑏2 − 4𝑎𝑐 
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 = (−1)2 − 4.1. (−6) 

 = 1 − (−24) 

 = 25 

As raízes são: 

 𝑦 =
−𝑏±√∆

2𝑎
 

 𝑦 =
−(−1)±√25

2.1
 

 𝑦 =
1±5

2
 

𝒚𝟏 = 𝟑  ;  𝒚𝟐 = −𝟐 

Voltando ao problema, temos que 𝑦 = |𝑥|. Logo: 

• |𝑥| = 𝟑 → 𝒙 = 𝟑  ou 𝒙 = −𝟑. 

• |𝑥| = −𝟐 → Não há 𝒙 que satisfaça essa igualdade, pois |𝒙| ≥ 𝟎. 

Portanto, o conjunto solução da equação |𝒙|𝟐 − |𝒙| − 𝟔 = 𝟎 é: 

𝑆 = {−3; 3} 

Logo, a soma das raízes de 𝒇(𝒙) = 𝟎 é: 

3 + (−3) = 0 

Gabarito: Letra B. 

 

(MÉTODO/Pref. NB d'Oeste/2021) Determine as raízes da função modular abaixo. 

𝒇(𝒙) = |𝒙 − 𝟑| − 𝟑 

a) 𝑥 = −3 

b) 𝑥 = −6 

c) 𝑥 = −6 e 𝑥 = 6 

d) 𝑥 = 6 e 𝑥 = 0 

Comentários: 

Para obter as raízes da função modular, basta fazer 𝑓(𝑥) = 0. 

|𝑥 − 3| − 3 = 0 
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→ |𝑥 − 3| = 3 → {
𝑥 − 3 = 3   

ou
𝑥 − 3 = −3

   →  {
𝑥 = 6
ou
𝑥 = 0

   

Portanto, as raízes da função 𝑓(𝑥) são 𝒙 = 𝟔 e 𝒙 = 𝟎. 

Gabarito: Letra D. 

 

(AOCP/Pref. Feira de Santana/2018) Dada a função modular 𝒇(𝒙)  =  |𝒙 –  𝟑| –  𝟓, as raízes dessa função 

serão iguais a 

a) – 2 e 8. 

b) – 8 e 2. 

c) – 2 e – 8. 

d) 2 e 8. 

e)  – 8 e 8. 

Comentários: 

Para obter as raízes da função modular, basta fazer 𝑓(𝑥) = 0. 

|𝑥 − 3| − 5 = 0 

→ |𝑥 − 3| = 5 →  {
𝑥 − 3 = 5   

ou
𝑥 − 3 = −5

   →  {
𝑥 = 8 
ou

𝑥 = −2
   

Portanto, as raízes da função 𝒇(𝒙) são −2 e 8. 

Gabarito: Letra A. 

 

(EDUCA PB/Pref. Várzea/2019) Dada a função 𝒈(𝒙) = |𝟐𝒙 + 𝟏| − 𝟓, a soma dos quadrados de suas 

raízes é: 

a) 4 

b) 9 

c) 10 

d) 12 

e) 13 

Comentários: 

Para obter as raízes da função modular, basta fazer 𝑔(𝑥) = 0. 
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|2𝑥 + 1| − 5 = 0 

→ |2𝑥 + 1| = 5 →  {
2𝑥 + 1 = 5   

ou
2𝑥 + 1 = −5

   → {
2𝑥 = 5 − 1 

ou
2𝑥 = −5 − 1

 → {
2𝑥 = 4 
ou

2𝑥 = −6
→ {

𝑥 = 2 
ou

𝑥 = −3
  

Portanto, as raízes da função 𝒈(𝒙) são −3 e 2. A soma dos quadrados das raízes é: 

(−3)2 + 22 = 9 + 4 = 13 

Gabarito: Letra E. 

 

(EDUCA PB/Pref. Cabedelo/2020) Considere as funções reais 𝒇(𝒙) = |𝒙 − 𝟑| e 𝒈(𝒙) = 𝟓, e a equação 

𝒇(𝒙) − 𝒈(𝒙) = 𝟎 de raízes 𝒂 e 𝒃 (𝒂 > 𝒃). O valor do quociente entre 𝒂 e 𝒃 é igual a: 

a) −4 

b) −0,25 

c) 4 

d) 0,25 

e) −2 

Comentários: 

Vamos obter os valores de 𝑎 e de 𝑏, que são raízes da equação 𝑓(𝑥) − 𝑔(𝑥) = 0. 

𝑓(𝑥) − 𝑔(𝑥) = 0 

|𝑥 − 3| − 5 = 0 

→ |𝑥 − 3| = 5 →  {
𝑥 − 3 = 5   

ou
𝑥 − 3 = −5

   →  {
𝑥 = 8 
ou

𝑥 = −2
   

Como 𝑎 > 𝑏, temos que 𝒂 = 𝟖 e 𝒃 = −𝟐. O valor do quociente entre 𝒂 e 𝒃 é igual a: 

𝑎

𝑏
=
8

−2
= −4 

Gabarito: Letra A. 
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(DES IFSUL/IF SUL/2010) A soma das abscissas dos pontos de intersecção das funções 𝒇 (𝒙) = 𝒙 e 

𝒈(𝒙)  = ∣ 𝒙𝟐 − 𝟏 ∣ é o número real “b” tal que 

a) 𝑏 =  −√5 

b) 𝑏 =  0 

c) 𝑏 =  1 

d) 𝑏 =  √5  

Comentários: 

A intersecção de duas funções 𝑓(𝑥) e 𝑔(𝑥) ocorre nos pontos em que 𝒇(𝒙) = 𝒈(𝒙).  

Para obter o valor das abcissas desses pontos (isto é, o valor de 𝒙 desses pontos), basta resolver a equação 
𝒇(𝒙) = 𝒈(𝒙). Temos: 

𝑓(𝑥) = 𝑔(𝑥) 

𝑥 = |𝑥2 − 1| 

|𝑥2 − 1| = 𝑥 →  

{
 
 

 
 𝑥

2 − 1 = 𝑥       
ou

𝑥2 − 1 = −(𝑥)
𝐞

𝒙 ≥ 𝟎

→ 

{
 
 

 
 𝑥

2 − 𝑥 − 1 = 0
ou

𝑥2 + 𝑥 − 1 = 0
𝐞

𝒙 ≥ 𝟎

 

Devemos encontrar as raízes das duas equações do segundo grau obtidas. 

Primeira equação: 𝒙𝟐 − 𝒙 − 𝟏 = 𝟎 

Para encontrar as raízes, vamos utilizar a fórmula de Bhaskara. Temos: 

 𝑎 = 1 

 𝑏 = −1 

 𝑐 = −1 

O discriminante é dado por: 

 ∆ = 𝑏2 − 4𝑎𝑐 

 = (−1)2 − 4.1. (−1) 

 = 1 − (−4) 

 = 5 
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As raízes são: 

 𝑥 =
−𝑏±√∆

2𝑎
 

 𝑥 =
−(−1)±√5

2.1
 

 𝑥 =
1±√5

2
 

𝑥1 =
1+√5

2
;  𝑥2 =

1−√5

2
 

Segunda equação: 𝒙𝟐 + 𝒙 − 𝟏 = 𝟎 

Para encontrar as raízes, vamos utilizar a fórmula de Bhaskara. Temos: 

 𝑎 = 1 

 𝑏 = 1 

 𝑐 = −1 

O discriminante é dado por: 

 ∆ = 𝑏2 − 4𝑎𝑐 

 = (1)2 − 4.1. (−1) 

 = 1 − (−4) 

 = 5 

As raízes são: 

 𝑥 =
−𝑏±√∆

2𝑎
 

 𝑥 =
−1±√5

2.1
 

 𝑥 =
−1±√5

2
 

𝑥1 =
−1+√5

2
;  𝑥2 =

−1−√5

2
 

Voltando ao problema original, temos: 
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{
 
 

 
 𝑥

2 − 𝑥 − 1 = 0
ou

𝑥2 + 𝑥 − 1 = 0
𝐞

𝒙 ≥ 𝟎

 →

{
  
 

  
 𝑥 =

1 + √5

2
 ou 𝑥 =

1 − √5

2
 

ou

𝑥 =
−1 + √5

2
 ou 𝑥 =

−1 − √5

2
𝐞

𝒙 ≥ 𝟎

 

Como devemos respeitar a condição de que 𝒙 ≥ 𝟎, os únicos valores de 𝑥 possíveis são 
𝟏+√𝟓

𝟐
 e 
−𝟏+√𝟓

𝟐
. 

Portanto, a soma das abscissas dos pontos de intersecção das funções é: 

(
1 + √5

2
) + (

−1 + √5

2
) 

=
2√5

2
 

= √5 

Gabarito: Letra D. 

 

(CEV URCA/URCA/2017) A soma das raízes da função 𝒇(𝒙) = |𝟓𝒙 − 𝟐| + |𝒙 +  𝟏| − 𝟓 é igual a: 

a) −1 

b) −1/4 

c) 0 

d) 1 

e) 1/2 

Comentários: 

Para obter as raízes da função, devemos fazer 𝒇(𝒙) = 𝟎. Temos a seguinte equação: 

|5𝑥 − 2| + |𝑥 +  1| − 5 = 0 

|𝟓𝒙 − 𝟐| + |𝒙 +  𝟏| = 𝟓 

Vamos verificar o sinal de 𝟓𝒙 − 𝟐: 

𝟓𝒙 − 𝟐 ≥ 𝟎 →  5𝑥 ≥ 2 →  𝒙 ≥
𝟐

𝟓
 

𝟓𝒙 − 𝟐 < 𝟎 → 5𝑥 < 2  →   𝒙 <
𝟐

𝟓
 

Equipe Exatas Estratégia Concursos

Aula 18

PRF (Policial) Raciocínio Lógico Matemático - 2023 (Pré-Edital)

www.estrategiaconcursos.com.br

07414656390 - Adriane cândido Monte

89

163



 

Agora vamos verificar o sinal de 𝒙 + 𝟏: 

𝒙 + 𝟏 ≥ 𝟎 → 𝒙 ≥ −𝟏 

𝒙 + 𝟏 < 𝟎 → 𝒙 < −𝟏 

Logo, devemos analisar a equação |𝟓𝒙 − 𝟐| + |𝒙 +  𝟏| = 𝟓 para três casos: 

• 𝒙 < −𝟏 
 

• −𝟏 ≤ 𝒙 <
𝟐

𝟓
; e 

 

• 𝒙 ≥
𝟐

𝟓
. 

Podemos inserir esses casos em uma tabela: 

 

Caso 1: 𝒙 < −𝟏 

| 𝟓𝒙 − 𝟐⏟    |
𝐍𝐞𝐠𝐚𝐭𝐢𝐯𝐨

+ |𝒙 + 𝟏⏟  |
𝐍𝐞𝐠𝐚𝐭𝐢𝐯𝐨

= 𝟓 

−(5𝑥 − 2) − (𝑥 + 1) = 5 

−5𝑥 + 2 − 𝑥 − 1 = 5 

−5𝑥 − 𝑥 = 5 − 2 + 1 

−6𝑥 = 4 

𝑥 = −
2

3
 

Note que essa solução para 𝑥 não é válida, pois ela não é menor do que −1. 

Caso 2: −𝟏 ≤ 𝒙 <
𝟐

𝟓
 

| 𝟓𝒙 − 𝟐⏟    |
𝐍𝐞𝐠𝐚𝐭𝐢𝐯𝐨

+ |𝒙 + 𝟏⏟  |
𝐏𝐨𝐬𝐢𝐭𝐢𝐯𝐨

= 𝟓 

−(5𝑥 − 2) + (𝑥 + 1) = 5 

−5𝑥 + 2 + 𝑥 + 1 = 5 

−5𝑥 + 𝑥 = 5 − 2 − 1 
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−4𝑥 = 2 

𝑥 = −
1

2
 

Note que essa solução para 𝑥 é válida, pois ela está compreendida no intervalo −𝟏 ≤ 𝒙 <
𝟐

𝟓
. 

 

Caso 3: 𝒙 ≥
𝟐

𝟓
 

| 𝟓𝒙 − 𝟐⏟    |
𝐏𝐨𝐬𝐢𝐭𝐢𝐯𝐨

+ |𝒙 + 𝟏⏟  |
𝐏𝐨𝐬𝐢𝐭𝐢𝐯𝐨

= 𝟓 

(5𝑥 − 2) + (𝑥 + 1) = 5 

5𝑥 + 𝑥 = 5 + 2 − 1 

6𝑥 = 6 

𝑥 = 1 

Note que essa solução para 𝑥 é válida, pois ela é maior do que 
𝟐

𝟓
. 

Portanto, o conjunto solução da equação |𝟓𝒙 − 𝟐| + |𝒙 +  𝟏| = 𝟓 é: 

𝑆 = {−
1

2
;  1} 

Logo, a soma das raízes de 𝒇(𝒙) é: 

−
1

2
+ 1 =

1

2
 

Gabarito: Letra E. 
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QUESTÕES COMENTADAS - MULTIBANCAS 

Inequações modulares 

FGV 

(FGV/CBM-RJ/2022) Considere a desigualdade |𝟑𝒙 −  𝟐| < 𝟏𝟎.  

O número de valores inteiros de 𝒙 que satisfazem a desigualdade dada é  

a) 4.   

b) 5.  

c) 6.  

d) 7.  

e) 8.  

Comentários: 

A inequação modular apresenta o caso em que módulo de 𝒇(𝒙) é menor do que constante 𝒌. Devemos 
utilizar a seguinte propriedade: 

|𝑓(𝑥)| < 𝑘   − 𝑘 < 𝑓(𝑥) < 𝑘   

 {
𝑓(𝑥) > −𝑘

𝐞
𝑓(𝑥) < 𝑘

 

Logo: 

|3𝑥 −  2| < 10 → −10 < 3𝑥 − 2 < 10 → {
3𝑥 − 2 > −10

𝐞
3𝑥 − 2 < 10

→ {
3𝑥 > −10 + 2

𝐞
3𝑥 < 10 + 2

→ {
3𝑥 > −8

𝐞
3𝑥 < 12

 

→

{
 
 

 
 𝑥 > −

8

3
𝐞

𝑥 <
12

3

→ {
𝑥 > −2,66…

𝐞
𝑥 < 4

 

Logo, devemos obter os inteiros que estão entre −2,66… e 4, sem considerar os extremos do intervalo. 
Portanto, os valores inteiros de 𝑥 que satisfazem a desigualdade são: 

−2;−1; 0; 1; 2; 3 
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Logo, o número de valores inteiros de 𝒙 que satisfazem a desigualdade dada é 6. 

Gabarito: Letra C. 

 

(FGV/SEAD-AP/2022) O número de valores inteiros de 𝒙 que satisfazem a desigualdade |𝟑𝒙|  <  𝟒𝝅 é  

a) 9.  

b) 8.  

c) 7.  

d) 6.  

e) 5.  

Comentários: 

Temos o caso em que módulo de 𝒇(𝒙) é menor do que uma constante 𝒌. Logo, devemos utilizar a seguinte 
propriedade: 

|𝒇(𝒙)| < 𝒌   − 𝒌 < 𝒇(𝒙) < 𝒌   

Para o caso em questão, 𝒇(𝒙) = 𝟑𝒙 e 𝒌 = 𝟒𝝅. Logo: 

|𝟑𝒙| < 𝟒𝝅  − 𝟒𝝅 < 𝟑𝒙 < 𝟒𝝅 

Dividindo a desigualdade por 3, temos: 

−
4𝜋

3
< 𝑥 <

4𝜋

3
 

−4 ×
𝝅

𝟑
< 𝑥 < 4 ×

𝝅

𝟑
 

Sabemos que o valor aproximado de 𝜋 é 3,14. Logo, 
𝝅

𝟑
 é um pouco maior do que 1 e, portanto: 

• 4 ×
𝝅

𝟑
 é um pouco maior do que 4; e 

• −4 ×
𝝅

𝟑
 é um pouco menor do que −4. 

Logo, os números inteiros que satisfazem a desigualdade são: 

−4,−3,−2,−1, 0, 1, 2, 3, 4 

Portanto, o número de valores inteiros de 𝑥 que satisfazem a desigualdade é 9. 

Gabarito: Letra A.  
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(FGV/Pref. Paulínia/2021) A soma dos valores inteiros pares de 𝒙 que satisfazem |𝒙 + 𝟐| < 𝟒𝝅 é: 

a) −26. 

b) −12. 

c) 0. 

d) 14. 

e) 22. 

Comentários: 

A inequação modular apresenta o caso em que módulo de 𝒇(𝒙) é menor do que constante 𝒌. Devemos 
utilizar a seguinte propriedade: 

|𝑓(𝑥)| < 𝑘   − 𝑘 < 𝑓(𝑥) < 𝑘   

 {
𝑓(𝑥) > −𝑘

𝐞
𝑓(𝑥) < 𝑘

 

Logo: 

|𝑥 + 2| < 4𝜋 → −4𝜋 < 𝑥 + 2 < 4𝜋 → {
𝑥 + 2 > −4𝜋

𝐞
𝑥 + 2 < 4𝜋

→ {
𝑥 > −4𝜋 − 2

𝐞
𝑥 < 4𝜋 − 2

 

O valor aproximado de 𝜋 é 3,14. Logo: 

{
𝑥 > −12,56 − 2

𝐞
𝑥 < 12,56 − 2

→ {
𝑥 > −𝟏𝟒, 𝟓𝟔

𝐞
𝑥 < 𝟏𝟎, 𝟓𝟔

 

Os inteiros pares de 𝑥 que estão entre −𝟏𝟒, 𝟓𝟔 e 𝟏𝟎, 𝟓𝟔 são: 

−14; −12; −10; −8;−6; −4; −2;  0;  2;  4;  6;  8;  10 

Ao somar os possíveis valores de 𝑥, os valores entre −10 e 10 se anulam, restando a seguinte soma: 

(−14) + (−12) 

= −26 

Gabarito: Letra A. 
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Cebraspe 

(CESPE/Pref. São Luís/2017) Se 𝒙 ≥ 𝟎 representa a quantidade de quilômetros percorridos por um 

veículo em determinado dia, então: 

• 𝒇(𝒙) =
𝒙

𝟏𝟐
 representa a quantidade de litros de combustível consumido pelo veículo para percorrer x 

quilômetros; 

• 𝒈(𝒙) = 𝟔𝟎 −
𝒙

𝟏𝟐
 representa a quantidade de litros de combustível que restam no tanque do veículo 

depois de percorridos x quilômetros. 

Considerando as funções 𝒇(𝒙) e 𝒈(𝒙) definidas, se x é tal que |𝒇(𝒙) − 𝒈(𝒙)| ≤ 𝟓, então 

a) x > 450. 

b) x < 270. 

c) 270 ≤ x < 330. 

d) 330 ≤ x ≤ 390. 

e) 390 < x ≤ 450. 

Comentários: 

Devemos obter a solução da inequação |𝒇(𝒙) − 𝒈(𝒙)| ≤ 𝟓. 

|𝑓(𝑥) − 𝑔(𝑥)| ≤ 5 

|
𝑥

12
− (60 −

𝑥

12
)| ≤ 5 

|
𝑥

12
+
𝑥

12
− 60| ≤ 5 

|
𝑥

6
− 60| ≤ 5 

Devemos agora aplicar a propriedade "módulo de 𝒇(𝒙) menor ou igual a uma constante". 

|
𝑥

6
− 60| ≤ 5 → −5 ≤

𝑥

6
− 60 ≤ 5 →

{
 

 
𝑥

6
− 60 ≥ −5

𝐞
𝑥

6
− 60 ≤ 5

→

{
 

 
𝑥

6
≥ 55

𝐞
𝑥

6
≤ 65

→ {
𝒙 ≥ 𝟑𝟑𝟎

𝐞
𝒙 ≤ 𝟑𝟗𝟎

 

Logo, temos que 𝟑𝟑𝟎 ≤ 𝒙 ≤ 𝟑𝟗𝟎. 

Gabarito: Letra D. 
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(CESPE/IFF/2018) O conjunto dos números reais x para os quais 𝟔 < | 𝟐𝐱 − 𝟔| ≤ 𝟏𝟎 é 

a) [2, 0) ∪ (6, 8]. 

b) (∞, 0) ∪ (6, + ∞). 

c) (∞, 2] ∪ (6, 8]. 

d) [2, 8]. 

e) (6, + ∞). 

Comentários: 

Note que o problema apresenta duas inequações simultâneas: 

|2𝑥 − 6| > 6 e |2𝑥 − 6| ≤ 10 

O conjunto solução que queremos obter deve respeitar as duas inequações ao mesmo tempo. 

 

Primeira inequação: |𝟐𝒙 − 𝟔| > 𝟔 

Temos o caso em que módulo de 𝒇(𝒙) é maior do que uma constante 𝒌. Logo, devemos utilizar a seguinte 
propriedade: 

|𝒇(𝒙)| > 𝒌   {
𝒇(𝒙) < −𝒌

𝐨𝐮
𝒇(𝒙) > 𝒌

 

Aplicando a propriedade para a inequação do problema, temos: 

|2𝑥 − 6| > 6  →  {
2𝑥 − 6 < −6

𝐨𝐮
2𝑥 − 6 > 6

→  {
2𝑥 < 0
𝐨𝐮

2𝑥 > 12
→  {

𝑥 < 0
𝐨𝐮
𝑥 > 6

 

Portanto, o conjunto solução da primeira inequação é: 

𝑆1 = {𝑥 ∈ ℝ / 𝑥 < 0 𝐨𝐮 𝑥 > 6} 

Segunda inequação: |𝟐𝒙 − 𝟔| ≤ 𝟏𝟎 

Temos o caso em que módulo de 𝒇(𝒙) é menor ou igual a uma constante 𝒌. Logo, devemos utilizar a 
seguinte propriedade: 

|𝑓(𝑥)| ≤ 𝑘      − 𝑘 ≤ 𝑓(𝑥) ≤ 𝑘   

 {
𝑓(𝑥) ≥ −𝑘

𝐞
𝑓(𝑥) ≤ 𝑘
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Aplicando a propriedade para a inequação do problema, temos: 

|2𝑥 − 6| ≤ 10 → −10 ≤ 2𝑥 − 6 ≤ 10 → {
2𝑥 − 6 ≥ −10

𝐞
2𝑥 − 6 ≤ 10

→ {
2𝑥 ≥ −4

𝐞
2𝑥 ≤ 16

→ {
𝑥 ≥ −2
𝐞

𝑥 ≤ 8
 

Portanto, o conjunto solução da segunda inequação é: 

𝑆2 = {𝑥 ∈ ℝ / 𝑥 ≥ −2 𝐞 𝑥 ≤ 8} = {𝑥 ∈ ℝ / −2 ≤ 𝑥 ≤ 8} 

 

Solução da inequação modular: 𝟔 < |𝟐𝒙 − 𝟔| ≤ 𝟏𝟎 

A solução da inequação modular 𝟔 < |𝟐𝒙 − 𝟔| ≤ 𝟏𝟎 é a intersecção das soluções de |𝟐𝒙 − 𝟔| > 𝟔 com 
|𝟐𝒙 − 𝟔| ≤ 𝟏𝟎: 

𝑆 = 𝑆1 ∩ 𝑆2 

 

Portanto, o conjunto solução da inequação 𝟔 < |𝟐𝒙 − 𝟔| ≤ 𝟏𝟎 é: 

𝑆 = {𝑥 ∈ ℝ/−2 ≤ 𝑥 < 0 𝐨𝐮 6 < 𝑥 ≤ 8} = [2, 0) ∪ (6, 8] 

Gabarito: Letra A. 

 

Vunesp 

(VUNESP/UNESP/2012) No conjunto ℝ dos números reais, o conjunto solução S da inequação modular 

|𝒙|. |𝒙 − 𝟓| ≥ 𝟔 é: 

a) S = {x ∈ ℝ/−1 ≤ x ≤ 6}. 

b) S = {x ∈ ℝ/x ≤ −1 ou 2 ≤ x ≤ 3}. 

c) S = {x ∈ ℝ/x ≤ −1 ou 2 ≤ x ≤ 3 ou x ≥ 6}. 
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d) S = {x ∈ ℝ/x ≤ 2 ou x ≥ 3}. 

e) S = ℝ. 

Comentários: 

Sabemos que o produto dos módulos de dois números é igual ao módulo do produto. Essa propriedade 
costuma ser descrita da seguinte forma: 

|𝑥| × |𝑦| = |𝑥𝑦| 

Note, portanto, que a inequação modular |𝑥| × |𝑥 − 5| ≥ 6 pode ser descrita assim: 

|𝑥 × (𝑥 − 5)| ≥ 6  

|𝑥2 − 5𝑥| ≥ 6  

Temos o caso em que módulo de 𝒇(𝒙) é maior ou igual a uma constante. Devemos, portanto, utilizar a 
seguinte propriedade: 

|𝑓(𝑥)| ≥ 𝑘   {
𝑓(𝑥) ≤ −𝑘

𝐨𝐮
𝑓(𝑥) ≥ 𝑘

 

Aplicando a propriedade para a inequação do problema, temos: 

|𝑥2 − 5𝑥| ≥ 6 → {
𝑥2 − 5𝑥 ≤ −6

𝐨𝐮
𝑥2 − 5𝑥 ≥ 6

→ {
𝑥2 − 5𝑥 + 6 ≤ 0

𝐨𝐮
𝑥2 − 5𝑥 − 6 ≥ 0

  

Pessoal, a parte da resolução que está relacionada a módulo acaba por aqui. Agora, devemos encontrar o 
conjunto solução de cada inequação do segundo grau encontrada. O conjunto solução da inequação 
modular será a união dos dois conjuntos. 

Primeira inequação: 𝒙𝟐 − 𝟓𝒙 + 𝟔 ≤ 𝟎 

Para resolver essa primeira inequação, devemos encontrar as raízes de 𝒙𝟐 − 𝟓𝒙 + 𝟔. 

Para encontrar as raízes, vamos usar a fórmula de Bhaskara. Temos: 

 𝑎 = 1 

 𝑏 = −5 

 𝑐 = 6 
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O discriminante é dado por: 

 ∆ = 𝑏2 − 4𝑎𝑐 

 = (−5)2 − 4 × 1 × 6 

 = 25 − 24 

 = 1 

As raízes são: 

 𝑥 =
−𝑏±√∆

2𝑎
 

 𝑥 =
−(−5)±√1

2×1
 

 𝑥 =
5±1

2
 

 𝑥1 = 2   ;    𝑥2 = 3 

Agora que temos as raízes, podemos descrever a parábola. Como o coeficiente 𝒂 é positivo, a concavidade 
da parábola é para cima. 

 

Portanto, 𝒙𝟐 − 𝟓𝒙 + 𝟔 ≤ 𝟎 quando 𝟐 ≤ 𝒙 ≤ 𝟑. 

Logo, conjunto solução dessa primeira inequação é: 

𝑆1 = {𝑥 ∈ ℝ / 2 ≤ 𝑥 ≤ 3} 

 

Segunda inequação: 𝒙𝟐 − 𝟓𝒙 − 𝟔 ≥ 𝟎 

Para resolver essa segunda inequação, devemos encontrar as raízes de 𝒙𝟐 − 𝟓𝒙 − 𝟔. 
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Para encontrar as raízes, vamos usar a fórmula de Bhaskara. Temos: 

 𝑎 = 1 

 𝑏 = −5 

 𝑐 = −6 

O discriminante é dado por: 

 ∆ = 𝑏2 − 4𝑎𝑐 

 = (−5)2 − 4 × 1 × (−6) 

 = 25 − (−24) 

 = 49 

As raízes são: 

 𝑥 =
−𝑏±√∆

2𝑎
 

 𝑥 =
−(−5)±√49

2×1
 

 𝑥 =
5±7

2
 

 𝑥1 = 6   ;    𝑥2 = −1 

Agora que temos as raízes, podemos descrever a parábola. Como o coeficiente 𝒂 é positivo, a concavidade 
da parábola é para cima.  

 

Portanto, 𝒙𝟐 − 𝟓𝒙 − 𝟔 ≥ 𝟎 quando 𝒙 ≤ −𝟏 ou 𝒙 ≥ 𝟔. 

Logo, conjunto solução dessa segunda inequação é: 

𝑆2 = {𝑥 ∈ ℝ /  𝑥 ≤ −1 𝐨𝐮 𝑥 ≥ 6} 
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Solução da inequação modular 

Vimos que a inequação |𝒙𝟐 − 𝟓𝒙| ≥ 𝟔 corresponde a: 

{
𝑥2 − 5𝑥 + 6 ≤ 0

𝐨𝐮
𝑥2 − 5𝑥 − 6 ≥ 0

 

Logo, conjunto solução da inequação |𝒙𝟐 − 𝟓𝒙| ≥ 𝟔 é a união das soluções das duas inequações do segundo 

grau: 

𝑆 = 𝑆1 ∪ 𝑆2 

Portanto, o conjunto solução da inequação |𝒙𝟐 − 𝟓𝒙| ≥ 𝟔 é: 

𝑆 = {𝑥 ∈ ℝ / 2 ≤ 𝑥 ≤ 3} ∪ {𝑥 ∈ ℝ /  𝑥 ≤ −1 𝐨𝐮 𝑥 ≥ 6} 

𝑆 = {𝑥 ∈ ℝ / 𝑥 ≤ −1 𝐨𝐮 2 ≤ x ≤ 3 𝐨𝐮 x ≥ 6} 

Gabarito: Letra C. 

 

(VUNESP/Pref. SBC/2010) Um professor de matemática da EJA propôs a resolução de um problema. Nele 

era procurado um número par, e o professor chamou esse número de 𝒙. Trabalhando com uma condição 

fornecida pelo problema, um aluno chegou à conclusão de que deveria ocorrer a inequação                           

│𝟑𝒙 – 𝟐│ < 𝟏𝟎. Trabalhando com outra condição fornecida pelo problema, outro aluno apresentou a 

inequação │𝟓 – 𝟐𝒙│ < 𝟓. O professor disse que os dois alunos haviam acertado o problema. Que valor 

tinha x nesse problema? 

a) –4. 

b) –2. 

c) 0. 

d) 2. 

 e) 4. 

Comentários: 

Note que que o número 𝑥 procurado obedece às seguintes condições: 

• 𝑥 é par; 

• |3𝑥 − 2| < 10; e 

• |5 − 2𝑥| < 5. 

Vamos desenvolver as duas inequações, que são do caso em que módulo de 𝒇(𝒙) é menor do que constante 
𝒌. Devemos utilizar a seguinte propriedade: 
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|𝑓(𝑥)| < 𝑘   − 𝑘 < 𝑓(𝑥) < 𝑘   

 {
𝑓(𝑥) > −𝑘

e
𝑓(𝑥) < 𝑘

 

A partir da primeira inequação, obtemos −
𝟖

𝟑
< 𝒙 < 𝟒: 

|3𝑥 − 2| < 10 →  −10 < 3𝑥 − 2 < 10 → {
3𝑥 − 2 > −10

𝐞
3𝑥 − 2 < 10

→ {
3𝑥 > −8

𝐞
3𝑥 < 12

→ {
𝒙 > −

𝟖

𝟑
𝐞

𝒙 < 𝟒

 

 

A partir da segunda inequação, obtemos 𝟎 < 𝒙 < 𝟓: 

|5 − 2𝑥| < 5 →  −5 < 5 − 2𝑥 < 5 → {
5 − 2𝑥 > −5

𝐞
5 − 2𝑥 < 5

→ {
−2𝑥 > −10

𝐞
−2𝑥 < 0

→ {
2𝑥 < 10

𝐞
2𝑥 > 0

→ {
𝒙 < 𝟓
𝐞

𝒙 > 𝟎
 

Note que, para respeitar todas as condições, devemos ter: 

• 𝑥 é par; e 

• 𝟎 < 𝒙 < 𝟒. 

O único número que respeita essas condições é o número 2. 

Gabarito: Letra D. 

 

Outras Bancas 

(IMPARH/SME Fortaleza/2018) A função modular é definida no conjunto dos números reais, de modo 

que para um número real 𝒙 temos: 

|𝒙| = {
−𝒙, 𝒙 < 𝟎
   𝒙, 𝒙 ≥ 𝟎

 

Desse modo, a desigualdade |𝒙| ≤ 𝟑 é equivalente a: 

a) 𝑥 ≤ 3 

b) 𝑥 ≤ −3 

c) 𝑥 ≤ −3 ou 𝑥 ≥ 3 

d) −3 ≤ 𝑥 ≤ 3 

Comentários: 
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Temos o caso em que módulo de 𝒇(𝒙) é menor ou igual a uma constante 𝒌. Logo, devemos utilizar a 
seguinte propriedade: 

|𝒇(𝒙)| ≤ 𝒌   − 𝒌 ≤ 𝒇(𝒙) ≤ 𝒌   

Para o caso em questão, 𝒇(𝒙) = 𝒙 e 𝒌 = 𝟑. Logo: 

|𝒙| ≤ 𝟑  − 𝟑 ≤ 𝒙 ≤ 𝟑 

Gabarito: Letra D. 

 

(DIRENS/EEAR/2020) Seja a inequação | − 𝟐𝒙 + 𝟔| ≤ 𝟒, no conjunto dos números reais. A quantidade 

de números inteiros contidos em seu conjunto solução é ____ . 

a) 3 

b) 4 

c) 5 

d) 6 

Comentários: 

Temos o caso em que módulo de 𝒇(𝒙) é menor ou igual a uma constante 𝒌. Logo, devemos utilizar a 
seguinte propriedade: 

|𝒇(𝒙)| ≤ 𝒌   − 𝒌 ≤ 𝒇(𝒙) ≤ 𝒌   

 {
𝒇(𝒙) ≥ −𝒌

𝐞
𝒇(𝒙) ≤ 𝒌

 

Aplicando a propriedade para a inequação do problema, temos: 

|−2𝑥 + 6| ≤ 4 → −4 ≤ −2𝑥 + 6 ≤ 4 → {
−2𝑥 + 6 ≥ −4

𝐞
−2𝑥 + 6 ≤ 4

→ {
−2𝑥 ≥ −10

𝐞
−2𝑥 ≤ −2

→ {
2𝑥 ≤ 10

𝐞
2𝑥 ≥ 2

→ {
𝑥 ≥ 5
𝐞

𝑥 ≤ 1
 

O conjunto solução da inequação é: 

𝑆 = {𝑥 ∈ ℝ / 𝑥 ≥ 1 𝐞 𝑥 ≤ 5} = {𝑥 ∈ ℝ / 1 ≤ 𝑥 ≤ 5} 

Temos um total de 5 números inteiros contidos no conjunto solução: 

1; 2; 3; 4 e 5 

Gabarito: Letra C. 
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(DIRENS/EEAR/2009) Seja a inequação |𝒙 − 𝟏| ≤ 𝟑. A soma dos números inteiros que satisfazem essa 

inequação é 

a) 8. 

b) 7. 

c) 5. 

d) 4. 

Comentários: 

Temos o caso em que módulo de 𝒇(𝒙) é menor ou igual a uma constante 𝒌. Logo, devemos utilizar a 
seguinte propriedade: 

|𝒇(𝒙)| ≤ 𝒌   − 𝒌 ≤ 𝒇(𝒙) ≤ 𝒌   

 {
𝒇(𝒙) ≥ −𝒌

𝐞
𝒇(𝒙) ≤ 𝒌

 

Aplicando a propriedade para a inequação do problema, temos: 

|𝑥 − 1| ≤ 3 → −3 ≤ 𝑥 − 1 ≤ 3 → {
𝑥 − 1 ≥ −3

𝐞
𝑥 − 1 ≤ 3

→ {
𝑥 ≥ −3 + 1

𝐞
𝑥 ≤ 3 + 1

→  {
𝒙 ≥ −𝟐
𝐞

𝒙 ≤ 𝟒
 

Devemos somar os números inteiros 𝑥 tais que −𝟐 ≤ 𝒙 ≤ 𝟒: 

−2 − 1 + 0 + 1 + 2 + 3 + 4 

= 7 

Gabarito: Letra B. 

 

(AOCP/Pref. Feira de Santana/2018) Seja 𝒇(𝒙) uma função real definida por: 

{

𝒙 + 𝟔,   𝐩𝐚𝐫𝐚 𝒙 ≤ 𝟏𝟎,              
𝟏𝟔, 𝐩𝐚𝐫𝐚 𝟏𝟎 < 𝒙 < 𝟏𝟖            

−|𝒙 − 𝟏𝟒| + 𝟐𝟎, 𝐩𝐚𝐫𝐚 𝒙 ≥ 𝟏𝟖
 

Os valores de x, tais que 𝒇(𝒙) < 𝟎, são: 

a) ]−∞,−0[∪[1,+∞[ 

b) ]−∞,−34[ 

c) ]−∞,−12[∪[10,+∞[ 
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d) ]−∞,−6[∪]34,+∞[ 

e) [34,+∞[ 

Comentários: 

Para resolver a questão, devemos fazer 𝑓(𝑥) < 0 para três casos: 

• 𝑥 ≤ 10; 

• 10 < 𝑥 < 18; e 

• 𝑥 ≥ 18 

Caso 1: 𝒙 ≤ 𝟏𝟎 

Nesse primeiro caso, temos que 𝑓(𝑥) = 𝑥 + 6. Logo, temos a seguinte inequação: 

𝑓(𝑥) < 0 

𝑥 + 6 < 0 

𝑥 < −6 

Portanto, o conjunto solução para esse primeiro caso é: 

𝑆1 = {𝑥 ∈ ℝ / 𝑥 < −6} = ] − ∞,−6[ 

Caso 2: 𝟏𝟎 < 𝒙 < 𝟏𝟖 

Nesse segundo caso, temos que 𝑓(𝑥) = 16. Logo, temos a seguinte inequação: 

𝑓(𝑥) < 0 

16 < 0 

Não existe 𝑥 que faça com que 16 seja menor do que zero! Portanto, o conjunto solução é o conjunto vazio. 

𝑆2 = ∅ 

Caso 3: 𝒙 ≥ 𝟏𝟖 

No terceiro caso, temos que 𝑓(𝑥) = −|𝑥 − 14| + 20. Logo, temos a seguinte inequação: 

𝑓(𝑥) < 0 

−|𝑥 − 14| + 20 < 0 

20 < |𝑥 − 14| 

|𝑥 − 14| > 20 

Temos o caso em que módulo de 𝒇(𝒙) é maior do que uma constante 𝒌. Logo, devemos utilizar a seguinte 
propriedade: 

Equipe Exatas Estratégia Concursos

Aula 18

PRF (Policial) Raciocínio Lógico Matemático - 2023 (Pré-Edital)

www.estrategiaconcursos.com.br

07414656390 - Adriane cândido Monte

105

163

==2cc929==



 

|𝑓(𝑥)| > 𝑘   {
𝑓(𝑥) < −𝑘

𝐨𝐮
𝑓(𝑥) > 𝑘

 

Aplicando a propriedade para a inequação do problema, temos: 

|𝑥 − 14| > 20  →  {
𝑥 − 14 < −20

𝐨𝐮
𝑥 − 14 > 20

→  {
𝑥 < −7
𝐨𝐮

𝑥 > 34
 

Note que obtivemos 𝒙 < −𝟕 ou 𝒙 > 𝟑𝟒. Ocorre, porém, que estamos lidando com o caso em que 𝒙 ≥ 𝟏𝟖. 
Portanto, devemos descartar 𝒙 < −𝟕.  Logo, o conjunto solução para esse terceiro caso é: 

𝑆3 = {𝑥 ∈ ℝ / 𝑥 > 34} = ]34,+∞[ 

 

Solução do problema 

O conjunto solução do problema 𝑓(𝑥) < 0 é a união dos três casos: 

𝑆 = 𝑆1 ∪ 𝑆2 ∪ 𝑆3 

=] −∞,−6[ ∪  ∅ ∪]34, +∞[ 

=] −∞,−𝟔[ ∪ ]𝟑𝟒,+∞[ 

Gabarito: Letra D. 

 

(DECEx/ESA/2020) A solução da inequação |𝟑𝒙 − 𝟏𝟎| ≤ 𝟐𝒙 é dada por: 

a) S = {𝑥 ∈ ℝ / 𝑥 ≤ 10}. 

b) 𝑆 = Ø. 

c) S = {𝑥 ∈ ℝ / 2 ≤ 𝑥 ≤ 10}. 

d) S = {𝑥 ∈ ℝ / 𝑥 ≥ 2}. 

e) S = {𝑥 ∈ ℝ / 𝑥 ≤ 2 ou 𝑥 ≥ 10}. 

Comentários: 

Devemos utilizar a definição de módulo para resolver o problema. 

• Se o que está dentro das duas barras é positivo ou zero, mantenha o que está dentro 
das barras; ou 

• Se o que está dentro das duas barras é negativo, insira um sinal de menos. 
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Vamos verificar o sinal de 𝟑𝒙 − 𝟏𝟎: 

𝟑𝒙 − 𝟏𝟎 ≥ 𝟎  → 3𝑥 ≥ 10 → 𝒙 ≥
𝟏𝟎

𝟑
 

𝟑𝒙 − 𝟏𝟎 < 𝟎   → 3𝑥 < 10  → 𝒙 <
𝟏𝟎

𝟑
 

Logo, devemos resolver a inequação |𝟑𝒙 − 𝟏𝟎| ≤ 𝟐𝒙 para dois casos: 

• 𝒙 <
𝟏𝟎

𝟑
; e 

 

• 𝒙 ≥
𝟏𝟎

𝟑
. 

Caso 1: 𝒙 <
𝟏𝟎

𝟑
 

| 𝟑𝒙 − 𝟏𝟎⏟    |
𝐍𝐞𝐠𝐚𝐭𝐢𝐯𝐨

≤ 𝟐𝒙  

−(3𝑥 − 10) ≤ 2𝑥 

−3𝑥 + 10 ≤ 2𝑥 

10 ≤ 5𝑥 

5𝑥 ≥ 10 

𝑥 ≥ 2 

 

Como nesse caso devemos ter 𝒙 <
𝟏𝟎

𝟑
, a solução do caso 1 é: 

𝑆1 = {𝑥 ∈ ℝ / 𝑥 ≥ 2 𝐞 𝑥 <
10

3
}  = {𝑥 ∈ ℝ / 𝟐 ≤ 𝒙 <

𝟏𝟎

𝟑
} 

 

Caso 2: 𝒙 ≥
𝟏𝟎

𝟑
 

| 𝟑𝒙 − 𝟏𝟎⏟    |
𝐏𝐨𝐬𝐢𝐭𝐢𝐯𝐨

≤ 𝟐𝒙  

3𝑥 − 10 ≤ 2𝑥 

3𝑥 − 2𝑥 ≤ 10 

𝑥 ≤ 10 

Como nesse caso devemos ter 𝒙 ≥
𝟏𝟎

𝟑
, a solução do caso 2 é: 
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𝑆2 = {𝑥 ∈ ℝ / 𝑥 ≥
10

3
 𝐞 𝑥 ≤ 10}  = {𝑥 ∈ ℝ /

𝟏𝟎

𝟑
 ≤ 𝒙 ≤ 𝟏𝟎} 

 

Solução da inequação modular 

O conjunto solução da inequação |𝟑𝒙 − 𝟏𝟎| ≤ 𝟐𝒙 é a união dos dois casos: 

𝑆 = 𝑆1 ∪ 𝑆2 = {𝑥 ∈ ℝ / 𝟐 ≤ 𝒙 ≤ 𝟏𝟎} 

Gabarito: Letra C. 

 

(CS UFG/Pref. Goiânia/2016) Para um determinado valor da constante k, a inequação modular                                 

|𝒙 + 𝟏| ≤ |𝒌 − 𝒙/𝟐| possui uma única solução real na incógnita x. Qual é o valor da constante k que 

satisfaz a propriedade citada? 

a) 4 

b) −1 

c) 5/3 

d) −1/2 

Comentários: 

Via de regra, o conjunto solução de inequações costuma ser um intervalo. Observe que o enunciado nos diz 

que, para |𝑥 + 1| ≤ |𝑘 −
𝑥

2
|, temos uma única solução real. 

Para que tenhamos uma única solução real, deve necessariamente ocorrer a igualdade, isto é: 

|𝒙 + 𝟏| = |𝒌 −
𝒙

𝟐
| 

Vamos obter as possíveis soluções, lembrando da seguinte propriedade de equações modulares: 

|𝑓(𝑥)| = |𝑔(𝑥)|      {
𝑓(𝑥) = 𝑔(𝑥)

ou
𝑓(𝑥) = −𝑔(𝑥)

 

Aplicando a propriedade ao problema, temos: 

|𝑥 + 1| = |𝑘 −
𝑥

2
| →

{
 

 𝑥 + 1 = 𝑘 −
𝑥

2
         

𝑜𝑢

𝑥 + 1 = −(𝑘 −
𝑥

2
) 

→

{
 

 𝑥 +
𝑥

2
= 𝑘 − 1         

𝑜𝑢

𝑥 + 1 = −𝑘 +
𝑥

2
 

→

{
 
 

 
 3

2
𝑥 = 𝑘 − 1         

𝑜𝑢

𝑥 −
𝑥

2
= −𝑘 − 1 

 

Equipe Exatas Estratégia Concursos

Aula 18

PRF (Policial) Raciocínio Lógico Matemático - 2023 (Pré-Edital)

www.estrategiaconcursos.com.br

07414656390 - Adriane cândido Monte

108

163



 

→

{
 
 

 
 𝑥 =

2

3
(𝑘 − 1)         

𝑜𝑢
𝑥

2
= −(𝑘 + 1) 

→ {
𝑥 =

2

3
(𝑘 − 1)         

𝑜𝑢
𝑥 = −2(𝑘 + 1) 

 

Note que, a princípio, teríamos duas soluções reais: 𝒙 =
𝟐

𝟑
(𝒌 − 𝟏) e 𝒙 = −𝟐(𝒌 + 𝟏). Para que tenhamos 

apenas uma solução real, essas duas soluções obtidas devem ser iguais. Logo: 

2

3
(𝑘 − 1) = −2(𝑘 + 1) 

𝑘 − 1 =
3

2
× −2(𝑘 + 1) 

𝑘 − 1 = −3(𝑘 + 1) 

𝑘 − 1 = −3𝑘 − 3 

𝑘 + 3𝑘 = 1 − 3 

4𝑘 = −2 

𝑘 = −
1

2
 

Gabarito: Letra D. 
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QUESTÕES COMENTADAS - MULTIBANCAS 

Função modular 

FGV 

(FGV/Pref. Osasco/2014) Assinale a única função, dentre as opções seguintes, que pode estar 

representada no gráfico a seguir: 

 

a) y = 1 – |x – 1|; 

b) y = 1 – |x + 1|; 

c) y = 1 + |x – 1|; 

d) y = 1 + |x + 1|; 

e) y = |x – 1| + |x + 1|. 

Comentários: 

Vamos obter o gráfico apresentado a partir da função básica 𝒚 = |𝒙|. 

 

A partir do gráfico de |𝒙|, podemos espelhar toda a função com relação ao eixo 𝑥, obtendo −|𝒙|. 
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A partir do gráfico de −|𝒙|, podemos realizar uma translação horizontal em uma unidade para a direita, 
obtendo −|𝒙 − 𝟏|. 

 

A partir do gráfico de −|𝒙 − 𝟏|, podemos realizar uma translação vertical em uma unidade para cima, 
obtendo −|𝒙 − 𝟏| + 𝟏 

 

Note que o gráfico obtido é igual ao apresentado no enunciado. Logo, a função procurada é: 
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𝑦 = −|𝑥 − 1| + 1 

𝒚 = 𝟏 − |𝒙 − 𝟏| 

Gabarito: Letra A. 

 

Vunesp 

(VUNESP/PM SP/2011) Seja 𝒇 uma função cujo gráfico está representado a seguir. 

 

A figura que representa o gráfico da função 𝒈(𝒙) =  𝒇(|𝒙|) é: 

a) 

 

b) 
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c) 

 

d) 

 

e) 

 

Comentários: 

Note que a função 𝑔(𝑥) é obtida aplicando-se um módulo na variável 𝒙.  

Ao se aplicar um módulo na variável 𝒙, o novo gráfico é obtido do seguinte modo: 

• Para 𝒙 ≥ 𝟎, o novo gráfico é igual ao gráfico original; e 

• Para 𝒙 negativo, o novo gráfico é um "espelho", com relação ao eixo 𝒚, do caso 𝑥 ≥ 0. 

Portanto, o gráfico de 𝑔(𝑥) = 𝑓(|𝑥|) é a apresentado na alternativa B. 

Gabarito: Letra B. 
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Outras Bancas 

(GUALIMP/CM Divino/2020) Dado que 𝒇(𝒙)  =  | 𝒙 +  𝟏 |, analise os itens abaixo. 

I. Trata-se de uma função do 1º grau. 

II. O domínio é o conjunto dos números reais positivos. 

III. A imagem é o conjunto dos números reais positivos e o zero. 

IV. Se 𝒙 = – 𝟑, 𝒇(𝒙)  =  𝟐. 

Dos itens acima: 

a) Apenas I está correto. 

b) II e III estão corretos. 

c) III e IV estão corretos. 

d) Apenas IV está correto. 

Comentários: 

Vamos analisar cada um os itens. 

I. Trata-se de uma função do 1º grau. ERRADO. Trata-se de uma função modular. 

II. O domínio é o conjunto dos números reais positivos. ERRADO. 

O domínio de uma função são os possíveis valores que 𝑥 pode assumir. Nesse caso, 𝑥 pode ser qualquer valor 
do conjunto dos reais. 

III. A imagem é o conjunto dos números reais positivos e o zero. CERTO. 

A imagem de uma função são os possíveis valores que ela pode assumir.  

Os valores que |𝑥 − 1| pode assumir é o conjunto dos reais positivos e o zero, pois o módulo de um número 
não pode ser negativo. 

IV. Se 𝒙 = – 𝟑, 𝒇(𝒙)  =  𝟐. CERTO. 

𝑓(𝑥) = |𝑥 + 1| 

𝑓(−3) = | − 3 + 1| 

𝑓(−3) = | − 2| 

𝑓(−3) = 2 

Gabarito: Letra C. 
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 (IBFC/SEDUC MT/2017) Considere a função 𝒇(𝒙) = |𝒙𝟐–  𝟓|, cujo domínio é o conjunto dos números 

naturais. Assinale a alternativa que indica a qual o menor conjunto que irá pertencer o contradomínio 

desta função. 

a) Números Naturais 

b) Números Inteiros 

c) Números Racionais 

d) Números Reais 

e) Números Complexos 

Comentários: 

O contradomínio de uma função é o conjunto que necessariamente contém a imagem de função. Portanto, 
o menor contradomínio possível é a imagem da função. Devemos, portanto, determinar a imagem de 𝒇(𝒙). 

Como o domínio da função 𝒇(𝒙) = |𝒙𝟐 − 𝟓| é o conjunto dos naturais, só podemos utilizar valores naturais 
para 𝑥. Exemplos: 

𝑓(1) = |12 − 5| = |−4| = 4 

𝑓(2) = |22 − 5| = |4 − 5| = |−1| = 1 

𝑓(3) = |32 − 5| = |4| = 4 

… 

Nesse caso, a função 𝑓(𝑥) nos retornará sempre números naturais. Portanto, o conjunto imagem dessa 
função é o conjunto dos números naturais. Logo, o gabarito é letra A. 

Gabarito: Letra A. 

 

 (CS UFG/UFG/2012) O gráfico da função modular 𝒇 (𝒙) = |𝒂𝒙𝟐 + 𝒃𝒙 + 𝒄|, com 𝒂, 𝒃 ,𝒄 ∈ ℝ, tais que 𝒃𝟐 >

𝟒𝒂 c e 𝒂 > 𝟎, é: 

a) 
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b) 

 

c) 

 

d) 

 

Comentários: 

Como 𝑏2 > 4𝑎𝑐, temos a garantia de que a função 𝒈(𝒙) = 𝒂𝒙𝟐 + 𝒃𝒙 + 𝒄 apresenta duas raízes reais pois, 
neste caso, o discriminante ∆ é maior do que zero: 

𝑏2 > 4𝑎𝑐 

𝑏2 − 4𝑎𝑐 > 0 

∆ > 0 

Além disso, como 𝒂 > 𝟎, temos que a concavidade da parábola é para cima.  

Portanto, a função 𝒈(𝒙) = 𝒂𝒙𝟐 + 𝒃𝒙 + 𝒄 pode ser desenhada do seguinte modo: 
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O gráfico da função 𝒇(𝒙) = |𝒂𝒙𝟐 + 𝒃𝒙 + 𝒄| deve "espelhar" a função 𝒈(𝒙), com relação ao eixo 𝒙, para os 

casos em que 𝒈(𝒙) é negativa.  

Portanto, o gráfico da função modular 𝒇(𝒙) em questão pode ser descrito da seguinte forma: 

 

Gabarito: Letra A. 

 

(FAEPESUL/ISS Gov. Celso Ramos/2017) Considere a função 𝒇, de ℝ em ℝ, cuja representação gráfica se 

encontra na figura abaixo: 

 

Nestas condições, a função 𝒈, de ℝ em ℝ definida por 𝒈(𝒙) = |𝒇(𝒙)|, é representada graficamente por: 

a) 
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b) 

 

c) 

 

d) 
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e) 

 

Comentários: 

Temos que 𝒈(𝒙) = |𝒇(𝒙)|. 

Com relação ao gráfico 𝒇(𝒙), o gráfico da função 𝒈(𝒙) será descrito da seguinte forma: 

• Quando 𝒇(𝒙) é positivo ou zero, mantenha o gráfico de 𝒇(𝒙); 

• Quando 𝒇(𝒙) é negativo, devemos inserir um sinal de menos. Nesse caso, o gráfico da função original 
𝒇(𝒙) deve ser "espelhado" com relação ao eixo 𝒙. 

A função 𝒈(𝒙) que obedece aos dois pontos apresentados está na alternativa A. 

Gabarito: Letra A. 

 

(FAEPESUL/Pref. São João Batista SC/2018) Considere a função f, de ℝ em ℝ, definida por                        

𝒇(𝒙) = 𝒂𝒙𝟐 + 𝒃𝒙 + 𝒄, com 𝒂, b e c  números reais, cuja representação gráfica se encontra na figura abaixo: 

 

Assinale a alternativa que contém a representação gráfica da função 𝒈, de ℝ em ℝ, definida por 𝒈(𝒙) =
|𝒇(𝒙)|. 
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a) 

 

b) 

 

c) 
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d) 

 

e) 

 

Comentários: 

Temos que 𝒈(𝒙) = |𝒇(𝒙)|. 

Com relação ao gráfico 𝒇(𝒙), o gráfico da função 𝒈(𝒙) será descrito da seguinte forma: 

• Quando 𝒇(𝒙) é positivo ou zero, mantenha o gráfico de 𝒇(𝒙); 

• Quando 𝒇(𝒙) é negativo, devemos inserir um sinal de menos. Nesse caso, o gráfico da função original 
𝒇(𝒙) deve ser "espelhado" com relação ao eixo 𝒙. 

A função 𝒈(𝒙) que obedece aos dois pontos apresentados está na alternativa A. 

Gabarito: Letra A. 

 

Equipe Exatas Estratégia Concursos

Aula 18

PRF (Policial) Raciocínio Lógico Matemático - 2023 (Pré-Edital)

www.estrategiaconcursos.com.br

07414656390 - Adriane cândido Monte

121

163



 

(FAEPESUL/Pref. Araranguá/2016) Assinale a alternativa em que apresenta o gráfico da função 𝒇 definida 

de ℝ em ℝ em que 𝒚 = 𝒇(𝒙) = |𝟐𝒙 − 𝟒|. 

a) 

 

b) 

 

c) 
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d) 

 

e) 

 

Comentários: 

Primeiramente, vamos desenhar o gráfico de 𝒈(𝒙) = 𝟐𝒙 − 𝟒. 

A função 𝒈(𝒙) = 𝟐𝒙 − 𝟒 corta o eixo 𝑥 quando 𝑦 = 𝑔(𝑥) = 0.  

Logo, 𝒈(𝒙) corta o eixo 𝒙 no ponto (𝟐; 𝟎): 

𝑦 = 0 

2𝑥 − 4 = 0 

2𝑥 = 4 

𝒙 = 𝟐 

Além disso, 𝒈(𝒙) = 𝟐𝒙 − 𝟒 corta o eixo 𝑦 quando 𝑥 = 0.  

Logo, 𝒈(𝒙) corta o eixo 𝒚 em 𝒚 = −𝟒: 

𝑦 = 2𝑥 − 4 

𝑦 = 2 × 0 − 4 

𝒚 = −𝟒 
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Temos o seguinte gráfico para 𝒈(𝒙) = 𝟐𝒙 − 𝟒: 

 

Sabemos que 𝑓(𝑥) = |𝑔(𝑥)| = |2𝑥 − 4|. 

O gráfico da função 𝒇(𝒙) deve ser descrito da seguinte forma: 

• Quando 𝑔(𝑥) é positivo ou zero, mantenha o gráfico de 𝑔(𝑥); 
• Quando 𝑔(𝑥) é negativo, devemos inserir um sinal de menos. Nesse caso, o gráfico da função 

original 𝑔(𝑥) deve ser "espelhado" com relação ao eixo 𝒙. 

Logo, o gráfico de 𝑓(𝑥) é o seguinte: 

 

O gabarito, portanto, é letra A. 

Gabarito: Letra A. 
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(IDIB/CRM MT/2020) A partir do gráfico função modular 𝒇(𝒙)  =  |𝒙|, 𝒇: ℝ → ℝ, assinale a alternativa 

que apresenta uma função g que representa a translação de 𝒇 para a esquerda no eixo “x”. 

a) g(x) = |x + 1|, g: ℝ → ℝ. 

b) g(x) = |x – 1|, g: ℝ → ℝ. 

c) g(x) = |x| + 1, g: ℝ → ℝ. 

d) g(x) = |x| - 1, g: ℝ → ℝ. 

Comentários: 

Quanto à translação horizontal, temos que: 

Ao somar ou subtrair uma constante da variável 𝒙 de uma função qualquer, estamos 
transladando horizontalmente para a esquerda ou para a direita o gráfico dessa função. 

Portanto, a função que apresenta uma translação de |𝒙| para esquerda é 𝒈(𝒙) = |𝒙 + 𝟏|. 

Gabarito: Letra A. 

 

(GUALIMP/Pref. Porciúncula/2019) A função que originou o gráfico a seguir trata-se de uma função: 

 

a) Logarítmica. 

b) Delta. 

c) Modular. 

d) Quadrática. 

Comentários: 

Note que, a partir de 𝑓(𝑥) = |𝑥|, podemos realizar uma translação horizontal em uma unidade para a 
direita, obtendo: 

𝑔(𝑥) = |𝑥 − 1| 
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Na sequência, podemos realizar uma translação vertical em uma unidade para baixo, obtendo: 

ℎ(𝑥) = |𝑥 − 1| − 1 

 

Note que ℎ(𝑥) é a função procurada. 

Portanto, a função que originou o gráfico apresentado é uma função modular. 

Gabarito: Letra C. 

 

(DIRENS/EEAR/2010) A função modular 𝒇(𝒙)  =  |𝒙 −  𝟐| é decrescente para todo x real tal que 

a) 0 < x < 4. 

b) x > 0. 

c) x > 4. 

d) x ≤ 2. 

Comentários: 
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Podemos desenhar o gráfico de 𝒇(𝒙) = |𝒙 − 𝟐| realizando uma translação horizontal em duas unidades 
para a direita a partir da função 𝒈(𝒙) = |𝒙|. 

 

Note que 𝒇(𝒙) = |𝒙 − 𝟐| é decrescente para os valores de 𝒙 menores ou iguais a 2. 

Gabarito: Letra D. 

 

 (FAEPESUL/Pref. Araranguá/2016) Assinale a alternativa que apresenta o gráfico da função 𝒇:ℝ→ℝ, 

definida por 𝒇(𝒙) = |𝒙 + 𝟏| − 𝟐. 

a) 
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b) 

 

c) 

 

d) 
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e)  

 

Comentários: 

Vamos obter o gráfico de 𝒇(𝒙) = |𝒙 + 𝟏| − 𝟐 a partir da função básica 𝒚 = |𝒙|. 

 

A partir do gráfico de |𝒙|, podemos obter |𝒙 + 𝟏| realizando uma translação horizontal de uma unidade para 
a esquerda. 
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A partir do gráfico de |𝒙 + 𝟏|, podemos obter 𝒇(𝒙) = |𝒙 + 𝟏| − 𝟐 realizando uma translação vertical de duas 
unidades para baixo. 

 

Observe que o gráfico obtido corresponde ao que está apresentado na alternativa A. 

Gabarito: Letra A. 

 

 (FAEPESUL/Pref. São João Batista SC/2018) Assinale a alternativa que apresenta o gráfico da função 𝒇, 

de ℝ em ℝ, definida por 𝒇(𝒙) = ||𝒙| − 𝟐|. 

a) 

 

b)  
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c) 

 

d) 

 

e) 

 

Comentários: 
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Vamos obter o gráfico de 𝒇(𝒙) = ||𝒙| − 𝟐| a partir da função básica 𝒚 = |𝒙|. 

 

A partir do gráfico de |𝒙|, podemos obter |𝒙| − 𝟐 realizando uma translação vertical de duas unidades para 
baixo. 

 

A partir do gráfico de |𝒙| − 𝟐, podemos obter 𝒇(𝒙) = ||𝒙| − 𝟐| "espelhando" a função 𝒚 = |𝒙| − 𝟐 para os 
casos em que ela é negativa. 
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Observe que o gráfico obtido corresponde ao que está apresentado na alternativa A. 

Gabarito: Letra A. 
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LISTA DE QUESTÕES - MULTIBANCAS 

Módulo de um número real 

Outras Bancas 

(MS CONCURSOS/SEAD Passo Fundo/2016) Considere a função 𝒇(𝒙) = 𝟏 – |𝒙 +  𝟐|. 

 O valor de 𝒇(– 𝟑) é igual a: 

 a) –1 

 b) 0 

 c) 1 

 d) 2 

 

(ISAE/PM AM/2011) Se 𝒇(𝒙) = |𝒙 –  𝟑| − |𝟐 −  𝒙| então 𝒇(–  𝟐) é igual a: 

a) -1; 

b) 0; 

c) 1; 

d) 2. 

 

 (DIRENS/EEAR/2012) Seja a função  f: ℝ → ℝ, definida por  𝒇(𝒙) = |𝟐𝒙𝟐 − 𝟑|. O valor de 𝟏 +  𝒇(– 𝟏) é 

a) –1 

b) 0 

c) 1 

d) 2 

 

(FAFIPA/Pref. Arapongas/2020) Considere a função real 𝒇(𝒙)  =  |𝒙 −  𝟒| que também pode ser 

representada pelo gráfico abaixo e assinale a alternativa CORRETA. 
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a) 𝑓(−1) = −5. 

b) 𝑓(−3) + 𝑓(3) = 0. 

c) 𝑓(−2) = 𝑓(10). 

d) 𝑓(4) = 𝑓(−4). 

e) 𝑓(0) = −4. 

 

 (Instituto AOCP/IBC/2013) Quando 𝒙 ≤ 𝟐, então |𝒙 − 𝟐| + |𝟑 − 𝒙| é igual a: 

a) 5 

b) 2𝑥 − 5 

c) 2 

d) 𝑥 + 2 

e) −2𝑥 + 5 

 

(CSC IFPA/IF PA/2019) Usando a definição de função modular, podemos concluir com relação à função 

𝒇: [𝟎; 𝟐] → ℝ , dada por 𝒇(𝒙) = |𝒙𝟐  −  𝟐𝒙|  + |𝒙 − 𝟏| que: 

a) 𝑥2 + 𝑥 + 1 se 0 ≤ 𝑥 ≤ 1 

b) −𝑥2 − 𝑥 +  1 se 0 ≤ 𝑥 ≤ 1 

c) −𝑥2 −  𝑥 + 1 se 1 ≤ 𝑥 ≤ 2 

d) −𝑥2  +  3𝑥 +  1 se 1 ≤  𝑥 ≤  2 

e)  −𝑥2  +  3𝑥 +  1 se 1 ≤  𝑥 ≤  2 

 

(CESGRANRIO/TRANSPETRO/2011) Sendo  𝒚 =
|𝒂|

𝒂
+

|𝒃|

𝒃
+

|𝒄|

𝒄
+

|𝒅|

𝒅
, onde a, b, c e d são números reais 

diferentes de zero, qual o número de valores possíveis para y? 

a) 1 

b) 2 

c) 3 

d) 4 

e) 5 
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(INAZ do Pará/CRO RJ/2016) O valor da expressão √(𝒙 − 𝟑)𝟐, para 𝟎 ≤ 𝒙 < 𝟑 será: 

a) x−3 

b) 3−x 

c) x 

d) 3 

e) x−1 

 

 (ESAF/Pref. RJ/2010)  Considere 𝒂 e 𝒃 números reais. A única opção falsa é: 

a) |𝑎 + 𝑏| ≤ |𝑎| + |𝑏| 

b) |𝑎| + |𝑏| ≥ |𝑎 − 𝑏| 

c) |𝑎 − 𝑏| < |𝑎| − |𝑏| 

d) |𝑏 − 𝑎| ≥ |𝑏| − |𝑎| 

e) |𝑏 + 𝑎| ≤ |𝑎| + |𝑏| 
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GABARITO - MULTIBANCAS 

Módulo de um número real 

 LETRA B 

 LETRA C 

 LETRA D 

 LETRA C 

 LETRA E 

 LETRA E 

 LETRA E 

 LETRA B 

 LETRA C 
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LISTA DE QUESTÕES - MULTIBANCAS 

Equações modulares 

Outras Bancas 

(IAUPE/Pref. Caetés/2018) No campo dos números reais, o conjunto verdade da equação                                   

|𝟑𝒙 − 𝟏| = 𝟒 é: 

a) 𝑉 = {1} 

b) 𝑉 = {−1} 

c) 𝑉 = {−
5

3
} 

d) 𝑉 = {
5

3
} 

e) 𝑉 = {−1,
5

3
 } 

 

(Instituto AOCP/IBC/2013) O conjunto solução da equação |𝟐𝒙 + 𝟑| = 𝟕 é 

a) {−2,5} 

b) {2} 

c) {−5} 

d) {−5,2} 

e) ∅ 

 

(CONSEP/Pref. Ribamar Fiquene/2011) Resolva em ℝ a equação |
𝒙−𝟏

𝟐
+

𝟏

𝟒
| = 𝟏 e assinale a alternativa 

correta. 

a) x = 2/3 ou x = 0 

b) x = 5/2 ou x = −3/2 

c) x = - 2 ou x = 3 

d) x = 0 ou x = −1 

 

(DIRENS/EEAR/2018) Seja 𝒇(𝒙) = | 𝟑𝒙 –  𝟒 | uma função. Sendo 𝒂 ≠ 𝒃 e 𝒇(𝒂) = 𝒇(𝒃) = 𝟔, então o valor 

de a + b é igual a 

a) 5/3 

b) 8/3 
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c) 5 

d) 3 

 

(CEV URCA/Pref. Brejo Santo/2019) A soma das raízes distintas da equação modular |𝒙𝟐 − 𝟐𝒙| = 𝟏 é 

a) 3 

b) 2 

c) 2 + √2 

d) 4 

e) 3 − √2 

 

(DIRENS/EEAR/2018) Dada a equação |𝒙𝟐– 𝟐𝒙– 𝟒| = 𝟒, a soma dos elementos do conjunto solução é 

a) 4 

b) 6 

c) 8 

d) 10 

 

(FUNDATEC/ESE/2019) Analise a seguinte equação modular: 

|𝟒𝒙 − 𝟑| = 𝒙 

A soma de suas soluções é: 

a) 1. 

b) 0. 

c) 3/5. 

d) –3/5. 

e) 8/5. 

 

(MS CONCURSOS/SEAD Passo Fundo/2016) Assinale a alternativa que contém a solução da equação 

|𝒙| = 𝟒 + 𝒙: 

a) 𝑆 = {𝑥 ∈ ℝ /−5 < 𝑥 < −1} 

b) 𝑆 = {𝑥 ∈  ℝ / 1 < 𝑥 <  5} 

c) 𝑆 = {𝑥 ∈  ℝ /−1 < 𝑥 < 5} 

d) 𝑆 = {𝑥 ∈ ℝ/−5 < 𝑥 < −3} 
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(FAUEL/IF PR/2015) O conjunto solução da equação |𝒙| = 𝒙 –  𝟓 é igual a: 

a) 𝑆 =  ∅. 

b) 𝑆 =  {0}. 

c) 𝑆 =  {5}. 

d) 𝑆 =  {0, 1}. 

e) 𝑆 =  {0, 5}. 

 

(COPESE-UFT/Pref. Gurupi/2014) Encontre o conjunto solução para a seguinte equação modular:                      

|𝒙|𝟐 + 𝟐|𝒙| – 𝟏𝟓 =  𝟎. 

a) { 3, –  3} 

b) { 3, – 5} 

c) {– 5, – 3, 3} 

d) {–  5, –  3, 3, 5} 

 

(FUNDEP/Pref. Ibirité/2016) O número de soluções reais da equação |𝟐𝒙 –  𝟑|  + 𝟐 = |𝒙 + 𝟒| é: 

a) 0. 

b) 1. 

c) 2. 

d) 3. 

 

(FAFIPA/FA/2017) Resolva, no conjunto dos números reais, |𝟐𝒙 −  𝟓| − |𝒙 +  𝟑| = 𝟖.  

a) 𝑆 = {−2} 

b) 𝑆 = {16} 

c) Não admite solução real 

d) 𝑆 = {−2;  16} 

 

(CEV URCA/URCA/2019) O conjunto solução da equação |𝒙 − 𝟐| + |𝒙 − 𝟑| = 𝟏 é: 

a) {2} 

b) {3} 

c) {2,3} 

d) [2,3] 

e) [0,3] 
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(DIRENS/EEAR/2016) Seja 𝒇(𝒙) = |𝒙 −  𝟑| uma função. A soma dos valores de x para os quais a função 

assume o valor 2 é 

a) 3 

b) 4 

c) 6 

d) 7 

 

(CSEP IFPI/IF PI/2019) Os valores de 𝒙 que satisfazem a equação 𝒇(𝒙)  =  𝟎, onde                                            

𝒇(𝒙) = |𝒙|𝟐 −  |𝒙| − 𝟔 são números reais. A soma das raízes de 𝒇(𝒙)  =  𝟎 é: 

a) −1. 

b) 0. 

c) 1. 

d) 2. 

e) 3. 

 

(MÉTODO/Pref. NB d'Oeste/2021) Determine as raízes da função modular abaixo. 

𝒇(𝒙) = |𝒙 − 𝟑| − 𝟑 

a) 𝑥 = −3 

b) 𝑥 = −6 

c) 𝑥 = −6 e 𝑥 = 6 

d) 𝑥 = 6 e 𝑥 = 0 

 

(AOCP/Pref. Feira de Santana/2018) Dada a função modular 𝒇(𝒙)  =  |𝒙 –  𝟑| –  𝟓, as raízes dessa função 

serão iguais a 

a) – 2 e 8. 

b) – 8 e 2. 

c) – 2 e – 8. 

d) 2 e 8. 

e)  – 8 e 8. 
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(EDUCA PB/Pref. Várzea/2019) Dada a função 𝒈(𝒙) = |𝟐𝒙 + 𝟏| − 𝟓, a soma dos quadrados de suas 

raízes é: 

a) 4 

b) 9 

c) 10 

d) 12 

e) 13 

 

(EDUCA PB/Pref. Cabedelo/2020) Considere as funções reais 𝒇(𝒙) = |𝒙 − 𝟑| e 𝒈(𝒙) = 𝟓, e a equação 

𝒇(𝒙) − 𝒈(𝒙) = 𝟎 de raízes 𝒂 e 𝒃 (𝒂 > 𝒃). O valor do quociente entre 𝒂 e 𝒃 é igual a: 

a) −4 

b) −0,25 

c) 4 

d) 0,25 

e) −2 

 

(DES IFSUL/IF SUL/2010) A soma das abscissas dos pontos de intersecção das funções 𝒇 (𝒙) = 𝒙 e 

𝒈(𝒙)  = ∣ 𝒙𝟐 − 𝟏 ∣ é o número real “b” tal que 

a) 𝑏 =  −√5 

b) 𝑏 =  0 

c) 𝑏 =  1 

d) 𝑏 =  √5  

 

(CEV URCA/URCA/2017) A soma das raízes da função 𝒇(𝒙) = |𝟓𝒙 − 𝟐| + |𝒙 +  𝟏| − 𝟓 é igual a: 

a) −1 

b) −1/4 

c) 0 

d) 1 

e) 1/2 
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GABARITO - MULTIBANCAS 

Equações modulares 

 LETRA E 

 LETRA D 
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LISTA DE QUESTÕES - MULTIBANCAS 

Inequações modulares 

FGV 

(FGV/CBM-RJ/2022) Considere a desigualdade |𝟑𝒙 −  𝟐| < 𝟏𝟎.  

O número de valores inteiros de 𝒙 que satisfazem a desigualdade dada é  

a) 4.   

b) 5.  

c) 6.  

d) 7.  

e) 8.  

 

(FGV/SEAD-AP/2022) O número de valores inteiros de 𝒙 que satisfazem a desigualdade |𝟑𝒙|  <  𝟒𝝅 é  

a) 9.  

b) 8.  

c) 7.  

d) 6.  

e) 5.   

 

(FGV/Pref. Paulínia/2021) A soma dos valores inteiros pares de 𝒙 que satisfazem |𝒙 + 𝟐| < 𝟒𝝅 é: 

a) −26. 

b) −12. 

c) 0. 

d) 14. 

e) 22. 
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Cebraspe 

(CESPE/Pref. São Luís/2017) Se 𝒙 ≥ 𝟎 representa a quantidade de quilômetros percorridos por um 

veículo em determinado dia, então: 

• 𝒇(𝒙) =
𝒙

𝟏𝟐
 representa a quantidade de litros de combustível consumido pelo veículo para percorrer x 

quilômetros; 

• 𝒈(𝒙) = 𝟔𝟎 −
𝒙

𝟏𝟐
 representa a quantidade de litros de combustível que restam no tanque do veículo 

depois de percorridos x quilômetros. 

Considerando as funções 𝒇(𝒙) e 𝒈(𝒙) definidas, se x é tal que |𝒇(𝒙) − 𝒈(𝒙)| ≤ 𝟓, então 

a) x > 450. 

b) x < 270. 

c) 270 ≤ x < 330. 

d) 330 ≤ x ≤ 390. 

e) 390 < x ≤ 450. 

 

(CESPE/IFF/2018) O conjunto dos números reais x para os quais 𝟔 < | 𝟐𝐱 − 𝟔| ≤ 𝟏𝟎 é 

a) [2, 0) ∪ (6, 8]. 

b) (∞, 0) ∪ (6, + ∞). 

c) (∞, 2] ∪ (6, 8]. 

d) [2, 8]. 

e) (6, + ∞). 

 

Vunesp 

(VUNESP/UNESP/2012) No conjunto ℝ dos números reais, o conjunto solução S da inequação modular 

|𝒙|. |𝒙 − 𝟓| ≥ 𝟔 é: 

a) S = {x ∈ ℝ/−1 ≤ x ≤ 6}. 

b) S = {x ∈ ℝ/x ≤ −1 ou 2 ≤ x ≤ 3}. 

c) S = {x ∈ ℝ/x ≤ −1 ou 2 ≤ x ≤ 3 ou x ≥ 6}. 

d) S = {x ∈ ℝ/x ≤ 2 ou x ≥ 3}. 

e) S = ℝ. 
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(VUNESP/Pref. SBC/2010) Um professor de matemática da EJA propôs a resolução de um problema. Nele 

era procurado um número par, e o professor chamou esse número de 𝒙. Trabalhando com uma condição 

fornecida pelo problema, um aluno chegou à conclusão de que deveria ocorrer a inequação                           

│𝟑𝒙 – 𝟐│ < 𝟏𝟎. Trabalhando com outra condição fornecida pelo problema, outro aluno apresentou a 

inequação │𝟓 – 𝟐𝒙│ < 𝟓. O professor disse que os dois alunos haviam acertado o problema. Que valor 

tinha x nesse problema? 

a) –4. 

b) –2. 

c) 0. 

d) 2. 

 e) 4. 

 

Outras Bancas 

(IMPARH/SME Fortaleza/2018) A função modular é definida no conjunto dos números reais, de modo 

que para um número real 𝒙 temos: 

|𝒙| = {
−𝒙, 𝒙 < 𝟎
   𝒙, 𝒙 ≥ 𝟎

 

Desse modo, a desigualdade |𝒙| ≤ 𝟑 é equivalente a: 

a) 𝑥 ≤ 3 

b) 𝑥 ≤ −3 

c) 𝑥 ≤ −3 ou 𝑥 ≥ 3 

d) −3 ≤ 𝑥 ≤ 3 

 

(DIRENS/EEAR/2020) Seja a inequação | − 𝟐𝒙 + 𝟔| ≤ 𝟒, no conjunto dos números reais. A quantidade 

de números inteiros contidos em seu conjunto solução é ____ . 

a) 3 

b) 4 

c) 5 

d) 6 

 

 

 

Equipe Exatas Estratégia Concursos

Aula 18

PRF (Policial) Raciocínio Lógico Matemático - 2023 (Pré-Edital)

www.estrategiaconcursos.com.br

07414656390 - Adriane cândido Monte

146

163



 

(DIRENS/EEAR/2009) Seja a inequação |𝒙 − 𝟏| ≤ 𝟑. A soma dos números inteiros que satisfazem essa 

inequação é 

a) 8. 

b) 7. 

c) 5. 

d) 4. 

 

(AOCP/Pref. Feira de Santana/2018) Seja 𝒇(𝒙) uma função real definida por: 

{

𝒙 + 𝟔,   𝐩𝐚𝐫𝐚 𝒙 ≤ 𝟏𝟎,              
𝟏𝟔, 𝐩𝐚𝐫𝐚 𝟏𝟎 < 𝒙 < 𝟏𝟖            

−|𝒙 − 𝟏𝟒| + 𝟐𝟎, 𝐩𝐚𝐫𝐚 𝒙 ≥ 𝟏𝟖
 

Os valores de x, tais que 𝒇(𝒙) < 𝟎, são: 

a) ]−∞,−0[∪[1,+∞[ 

b) ]−∞,−34[ 

c) ]−∞,−12[∪[10,+∞[ 

d) ]−∞,−6[∪]34,+∞[ 

e) [34,+∞[ 

 

(DECEx/ESA/2020) A solução da inequação |𝟑𝒙 − 𝟏𝟎| ≤ 𝟐𝒙 é dada por: 

a) S = {𝑥 ∈ ℝ / 𝑥 ≤ 10}. 

b) 𝑆 = Ø. 

c) S = {𝑥 ∈ ℝ / 2 ≤ 𝑥 ≤ 10}. 

d) S = {𝑥 ∈ ℝ / 𝑥 ≥ 2}. 

e) S = {𝑥 ∈ ℝ / 𝑥 ≤ 2 ou 𝑥 ≥ 10}. 

 

(CS UFG/Pref. Goiânia/2016) Para um determinado valor da constante k, a inequação modular                                 

|𝒙 + 𝟏| ≤ |𝒌 − 𝒙/𝟐| possui uma única solução real na incógnita x. Qual é o valor da constante k que 

satisfaz a propriedade citada? 

a) 4 

b) −1 

c) 5/3 

d) −1/2 
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GABARITO - MULTIBANCAS 

Inequações modulares 
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LISTA DE QUESTÕES - MULTIBANCAS 

Função modular 

FGV 

(FGV/Pref. Osasco/2014) Assinale a única função, dentre as opções seguintes, que pode estar 

representada no gráfico a seguir: 

 

a) y = 1 – |x – 1|; 

b) y = 1 – |x + 1|; 

c) y = 1 + |x – 1|; 

d) y = 1 + |x + 1|; 

e) y = |x – 1| + |x + 1|. 

 

Vunesp 

(VUNESP/PM SP/2011) Seja 𝒇 uma função cujo gráfico está representado a seguir. 

 

A figura que representa o gráfico da função 𝒈(𝒙) =  𝒇(|𝒙|) é: 
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a) 

 

b) 

 

c) 

 

d) 

 

e) 
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Outras Bancas 

(GUALIMP/CM Divino/2020) Dado que 𝒇(𝒙)  =  | 𝒙 +  𝟏 |, analise os itens abaixo. 

I. Trata-se de uma função do 1º grau. 

II. O domínio é o conjunto dos números reais positivos. 

III. A imagem é o conjunto dos números reais positivos e o zero. 

IV. Se 𝒙 = – 𝟑, 𝒇(𝒙)  =  𝟐. 

Dos itens acima: 

a) Apenas I está correto. 

b) II e III estão corretos. 

c) III e IV estão corretos. 

d) Apenas IV está correto. 

 

(IBFC/SEDUC MT/2017) Considere a função 𝒇(𝒙) = |𝒙𝟐–  𝟓|, cujo domínio é o conjunto dos números 

naturais. Assinale a alternativa que indica a qual o menor conjunto que irá pertencer o contradomínio 

desta função. 

a) Números Naturais 

b) Números Inteiros 

c) Números Racionais 

d) Números Reais 

e) Números Complexos 

 

 (CS UFG/UFG/2012) O gráfico da função modular 𝒇 (𝒙) = |𝒂𝒙𝟐 + 𝒃𝒙 + 𝒄|, com 𝒂, 𝒃 ,𝒄 ∈ ℝ, tais que 𝒃𝟐 >

𝟒𝒂 c e 𝒂 > 𝟎, é: 

a) 
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b) 

 

c) 

 

d) 

 

 

(FAEPESUL/ISS Gov. Celso Ramos/2017) Considere a função 𝒇, de ℝ em ℝ, cuja representação gráfica se 

encontra na figura abaixo: 

 

Nestas condições, a função 𝒈, de ℝ em ℝ definida por 𝒈(𝒙) = |𝒇(𝒙)|, é representada graficamente por: 
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a) 

 

b) 

 

c) 
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d) 

 

e) 

 

(FAEPESUL/Pref. São João Batista SC/2018) Considere a função f, de ℝ em ℝ, definida por                        

𝒇(𝒙) = 𝒂𝒙𝟐 + 𝒃𝒙 + 𝒄, com 𝒂, 𝒃 e 𝒄  números reais, cuja representação gráfica se encontra na figura 

abaixo: 
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Assinale a alternativa que contém a representação gráfica da função 𝒈, de ℝ em ℝ, definida por 𝒈(𝒙) =
|𝒇(𝒙)|. 

a) 

 

b) 

 

c) 
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d) 

 

e) 

 

(FAEPESUL/Pref. Araranguá/2016) Assinale a alternativa em que apresenta o gráfico da função 𝒇 definida 

de ℝ em ℝ em que 𝒚 = 𝒇(𝒙) = |𝟐𝒙 − 𝟒|. 

a) 
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b) 

 

c) 

 

d) 

 

e) 
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(IDIB/CRM MT/2020) A partir do gráfico função modular 𝒇(𝒙)  =  |𝒙|, 𝒇: ℝ → ℝ, assinale a alternativa 

que apresenta uma função g que representa a translação de 𝒇 para a esquerda no eixo “x”. 

a) g(x) = |x + 1|, g: ℝ → ℝ. 

b) g(x) = |x – 1|, g: ℝ → ℝ. 

c) g(x) = |x| + 1, g: ℝ → ℝ. 

d) g(x) = |x| - 1, g: ℝ → ℝ. 

 

(GUALIMP/Pref. Porciúncula/2019) A função que originou o gráfico a seguir trata-se de uma função: 

 

a) Logarítmica. 

b) Delta. 

c) Modular. 

d) Quadrática. 

 

(DIRENS/EEAR/2010) A função modular 𝒇(𝒙)  =  |𝒙 −  𝟐| é decrescente para todo x real tal que 

a) 0 < x < 4. 

b) x > 0. 

c) x > 4. 

d) x ≤ 2. 
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 (FAEPESUL/Pref. Araranguá/2016) Assinale a alternativa que apresenta o gráfico da função 𝒇:ℝ→ℝ, 

definida por 𝒇(𝒙) = |𝒙 + 𝟏| − 𝟐. 

a) 

 

b) 

 

c) 
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d) 

 

e)  

 

 

 (FAEPESUL/Pref. São João Batista SC/2018) Assinale a alternativa que apresenta o gráfico da função 𝒇, 

de ℝ em ℝ, definida por 𝒇(𝒙) = ||𝒙| − 𝟐|. 

a) 
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b)  

 

c) 

 

d) 

 

e) 
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GABARITO - MULTIBANCAS 

Função modular 

 LETRA A 

 LETRA B 

 LETRA C 

 LETRA A 

 LETRA A 

 LETRA A 

 LETRA A 

 LETRA A 

 LETRA A 

 LETRA C 

 LETRA D 

 LETRA A 

 LETRA A 

Equipe Exatas Estratégia Concursos

Aula 18

PRF (Policial) Raciocínio Lógico Matemático - 2023 (Pré-Edital)

www.estrategiaconcursos.com.br

07414656390 - Adriane cândido Monte

162

163




